
CS61A DISCUSSION NOTES 4.5
WHAT DOES SCHEME PRINT?
Write down what Scheme will show if you type these expressions into the interpreter.

1. (let ((x 3)) (lambda (y) (+ x y)))

2. ((lambda (x) (let ((+ -)) x)) (+ 3 2))

3. (and or (not #f) (not not) 2)

4. ((word ‘but ‘first) ‘hello)

BOXES AND POINTERS
Write down what the list looks like and draw the box and pointer diagrams.

1. (cons (list 1 3) (append (list (cons 2 3)) (list 4)))

2. (list (append (list 3) (cons 4 ’())))

3. (cons (list 2 4) (list 3 6))

4. (cons (cons 3 1) (list))

5. (define x ‘(1 (2 3)))

a. draw x.

b. what does (cdr x) return?

Lovingly crafted by Kevin Hwang, Phillip Carpenter, Stephanie Rogers, Eric Tzeng, and Hamilton Nguyen for Summer 2011

ORDERS OF GROWTH

1. Suppose a procedure foo requires time (n) and a procedure bar requires time (log
n). Also, foo returns n and bar returns log n. What time do the following procedure
calls require?

a. (* (foo n) (foo n))

b. (foo (bar n))

c. (bar (foo n))

2a. Write a procedure (fib n) to calculate the nth Fibonacci number. Use a recursive
process. What is the order of growth? The nth Fibonacci number is given by F(n) = F(n-2) +
F(n-1).

b. Now rewrite fib using an iterative process. What is the order of growth? Is this
better or worse than the version in part a?

3. What does the following code produce in applicative order? Normal order?

a. (define (iwontstop n) (iwontstop (- n 1)))

b. (define (makemenormal x y) (if (> y 0) y x))

c. (makemenormal (iwontstop 3) 5

Lovingly crafted by Kevin Hwang, Phillip Carpenter, Stephanie Rogers, Eric Tzeng, and Hamilton Nguyen for Summer 2011

LISTS
1. This exercise will have you implement mergesort, a sorting algorithm.

a. Given two lists of numbers, write a procedure called merge that returns a list in which the
two lists of numbers are “merged” into increasing order. So, for example, (merge (list 1 3 4 6)
(list 3 5 7 8)) returns the list (1 3 4 5 6 7 8), while (merge (list 1 2 3 4) (list 5 6 7 8)) returns (list
1 2 3 4 5 6 7 8). You should assume that the lists are already in increasing order.

b. Given a list of numbers, write a procedure called sublist that also takes in two arguments –
start and end – and returns the sublist that starts at position start and ends at position end.
Assume that the list indices start from 0. For example, (sublist (list 2 3 4 5) 1 3) should return
the list (3 4 5).

c. We will now implement the mergesort algorithm to sort a list of numbers into increasing
order. The algorithm works as follows:
i. If a list is of length zero or one, then the list is already sorted.
ii. Otherwise, we separate the list into two smaller, equally-sized lists, sort the smaller lists,
and merge the two sorted lists.

Implement the procedure called mergesort that takes in a list of numbers and sorts the list
using the mergesort algorithm.

DATA ABSTRACTION
Let’s implement a very simple representation of Pokemon. A Pokemon’s attributes will simply
contain three e lds, de ned in the following way:

(define (pokemon type level experience) (list type level experience))

We wish to be able to reference a Pokemon’s attributes, but we want to do so in a meaningful
way.

Lovingly crafted by Kevin Hwang, Phillip Carpenter, Stephanie Rogers, Eric Tzeng, and Hamilton Nguyen for Summer 2011

a. Write the selectors for type, level, and experience. For example, a
Pokemon’s type would be de ned thus: (define type car).

b. Now we wish to be able to make our Pokemon battle each other:
First, if one Pokemon is at least five levels above the other, it automatically wins. Next, if the
Pokemon are within five levels of each other, the super-effective type wins. Finally, if neither
of the above is true, whoever has more experience wins. The procedure pokemon-battle
should return the winner, given two Pokemon poke1and poke2. You may assume that the
procedure super-effective is written. It takes two types and returns true if the rst is super-
e ective against the second. Remember to respect the abstraction!

c. Now suppose that for some weird reason, we decided to change the representation of
Pokemon attributes to the following:
(define (pokemon type level experience) (list (cons level experience) type))
Rewrite the selectors so that pokemon-battle still works as intended.

Lovingly crafted by Kevin Hwang, Phillip Carpenter, Stephanie Rogers, Eric Tzeng, and Hamilton Nguyen for Summer 2011

HIGHER ORDER FUNCTIONS

1. Write sentfn, a procedure that takes an arithmetic function and a list of
sentences of numbers and returns a new list of sentences that is the
result of calling the function on each number in each sentence. For example:
> (sentfn square ‘((2 5) (3 1 6)))
((4 25) (9 1 36))

Use higher order functions, not recursion, and respect the abstraction!

2. sum is a procedure that takes as an argument a sentence and returns the sum of all the
numbers in that sentence and the letter count of the words in the sentence.

ex: (sum ‘(i can do it 9 times)) = 22
(sum '(20 percent cooler)) = 33

a. Write sum using recursion. Do not use higher order functions.

b. Write sum using higher order functions. Do not use recursion.

Lovingly crafted by Kevin Hwang, Phillip Carpenter, Stephanie Rogers, Eric Tzeng, and Hamilton Nguyen for Summer 2011

