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CS61A Notes – Disc 10: Vectors, concurrency 
Just When You Were Getting Used to Lists 
 
Finally we are now introducing to you what many of you already know – arrays. Roughly, an array is a contiguous block of memory – 
and this is why you can have “instantaneous”, random access into the array, instead of having to traverse down the many pointers of 
a list. 
 
Recall the vector operators: 
 

(vector [element1] [element2] ...) => works just like (list [element1] ...) 
(make-vector [num]) => creates a vector of num elements, all unbound 
(make-vector [num] [init-value]) => creates a vector of num elements, all set to init-value 
(vector-ref v i) => v[i]; gets the ith element of the vector v 
(vector-set! v i val) => v[i] = val; sets the ith element of the vector v to val 
(vector-length v) => returns the length of the vector v 
 
Beyond using different operators, there are a few big differences between vectors and lists: 
 
Vectors of length N 
• a contiguous block of memory cells 
• O(1) for accessing any item in the vector 
• O(N) for adding an item to the middle of the vector, 
since you have to move the rest of the vector down 

• O(N) for growing a vector; you have to reallocate a new, 
larger block of memory! 
• add 1 to index to get next element 
• you may have “unbound” elements in the vector; that is, 
length of vector is not the same as length of valid data 

Lists of length N 
• many units of two cells linked together by pointers 
• O(N) for accessing an item 
• O(1) for inserting an item anywhere in the list, assuming 
we have a pointer to the location 
• O(1) for growing a list; just add it at the beginning or the 
end (if you have a pointer to the end) 

• cdr down a list 
• length of list is exactly the number of elements you've 
put into the list 

 
Note the last bullet. With lists, you allocate a new piece of memory (using cons) when you need to add an element, but with vector, 
you allocate all the memory you need first, even if you don’t have enough data to fill it up. 
 
Also, just as you can have deep lists, where elements of a list may be a list as well, you can also have “deep” vectors, often referred to 
as n-dimensional arrays, where n refers to how “deep” the deep vector is. For example, a table would be a 2-dimensional array – a 
vector of vectors. Note that, unlike in, say, C, your each vector in your 2D table does NOT have to have the same size! Instead, you 
can have variable-length rows inside the same table. In this sense, the vectors of Scheme are more like the arrays of Java than C. 
 
QUESTIONS 
 
In Class: 
 
1. Write a procedure (sum-of-vector v) that adds up the numbers inside the vector. Assume all data fields are valid 

numbers. 
 
 
 
 
 
2. Write a procedure (vector-copy! src src-start dst dst-start length). After the call, length 

elements in vector src starting from index src-start should be copied into vector dst starting from index dst-start. 
STk> a => #(1 2 3 4 5 6 7 8 9 10) 

STk> b => #(a b c d e f g h i j k) 

STk> (vector-copy! a 5 b 2 3) => okay 

STk> a => #(1 2 3 4 5 6 7 8 9 10) 

STk> b => #(a b 6 7 8 f g h i j k) 
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3. Write a procedure (vector-double! v). After a call, vector v should be doubled in size, with all the elements in the 

old vector replicated in the second half. So, 
STk> a => #(1 2 3 4) 

STk> (vector-double! a) => okay 

STk> a => #(1 2 3 4 1 2 3 4) 

 
 
 
 
 
 
 
4. Write a procedure reverse-vector!. Do I have to explain what it does? 
 
 
 
 
 
 
Extra Practice: 
 
5. Write a procedure (insert-at! v i val); after a call, vector v should have val inserted into location i. All 

elements starting from location i should be shifted down. The last element of v is discarded. 
STk> a => #(i'm like you #[unbound] #[unbound]) 

STk> (insert-at! a 1 ‘bohemian) => okay 

STk> a => #(i'm bohemian like you #[unbound]) 

 

 

 

 

 

 
 
 
6. Write a procedure (square-table! t) that takes in a rectangular table and squares every element. 
 
 
 
 
 
 
 
 
 
 
 

A Concurrent March Through Programming Hell 
 
On your computer, you often have multiple programs running at the same time – you might have your internet browser open 
browsing questionable pictures, your P2P software downloading non-pirated software, and your instant messaging client lying to a 
clueless middle-schooler across the country. But you have only one computer, and one CPU! How can you do so many things at once? 
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What actually happens is, the CPU switches between the different processes very quickly, doing work for each for a little while before 
moving on to the next, creating the illusion that the programs are running concurrently. The benefits are obvious for users like us so 
used to multitasking. 
 
Unfortunately, parallelism is one of the biggest headaches you’ll encounter. We’ll attempt to give you a tiny migraine, but in CS162, 
you’ll be swimming in a large ocean of pain with no shore in sight and a leaking life jacket. 

A bit of syntax. To run things concurrently, we use a Scheme primitive called parallel-execute, a procedure that takes in any 
number of “thunks” – procedures that take no arguments – and executes the thunks in parallel. For example, 
 
(define x 5) 

(parallel-execute (lambda () (set! x (+ x 10))) 

   (lambda () (set! x (+ x 20)))) 

 

will  attempt to set x to (+ x 10) and set x to (+ x 20) at the same time. Again, the computer “cheats” by interleaving 

operation between the different thunks. The answer that we want, of course, is 35 – we want the two thunks executed at the same 
time, but we still want the result to be as if they executed consecutively. 
 
Now, consider this simple Scheme expression: 
 
(set! x (+ x 10)) 

 

What looks like one Scheme operation is actually three operations: 
 
1. lookup the value of x 
2. add the value of x to 10 
3. store the result into x 
 

Thus, consider the above call to parallel-execute, and keep in mind that the two thunks can be interleaved arbitrarily: 
 

• lookup value of x 
• add 10 to the value of x 
• set x to the result 

 
 
 

• lookup value of x 
• add 20 to the value of x 
• set x to the result 

 

If the operations were interleaved in the above manner (not interleaved at all), then the value of x at the end is 35. 
 

• lookup value of x 
 

• add 10 to the value of x 
 
 

• set x to the result 

 

• lookup value of x 
 

• add 20 to the value of x 
• set x to the result 

 

In the above interleaving, the value of x ends up being 15. This is not what we wanted! 
 
QUESTION: What are the possible values of x after the below? 
 
(define x 5) 

(parallel-execute (lambda () (set! x (* x 2))) 

   (lambda () (if (even? x) 

        (set! x (+ x 1)) 

        (set! x (+ x 100))))) 
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Concurrency: The Series 
 
We use something called “serializers” to make sure that certain chunks of code are executed together. First, we need a way to create 
a serializer: 
 
 (define x-protector (make-serializer)) 

 
That was easy. A serializer takes in a procedure, and creates a serialized version of that procedure. So, 
 
 (define protected-plus-10 (x-protector (lambda () (set! x (+ x 10))))) 

 (define protected-plus-20 (x-protector (lambda () (set! x (+ x 20))))) 

 

protected-plus-10 still does the same thing as the original thunk – take in no arguments, and add 10 to x. However, because 

protected-plus-10 and protected-plus-20 are created with the same serializer, their instructions will not be interleaved. 
Therefore, in doing, 
 
 (parallel-execute protected-plus-10 protected-plus-20) 

 

you can always be sure that x will be set to 35 at the end. 
 
There’s also a primitive object called a “mutex” that’s even lower level than serializers (in fact, serializers are implemented with 
mutexes). You can interact with a mutex this way: 
 
 (define m (make-mutex)) 

 (m „acquire) ;; “reserves” the mutex 

 (m „release) ;; “releases” the mutex 

 
Once one program has acquired a mutex, if another wants to acquire the same mutex, it must wait until the mutex is released. So we 
can do this to obtain the same result: 
 
 (define x-mutex (make-mutex)) 

 (parallel-execute 

    (lambda () (x-mutex „acquire) (set! x (+ x 10)) (x-mutex „release)) 

    (lambda () (x-mutex „acquire) (set! x (+ x 20)) (x-mutex „release))) 

 

The calls to acquire and release a mutex marks the critical sections of the code – sections that should not be interleaved with other 
processes also needing the same mutex. 
 
When working with concurrency, there are four potential kinds of problems: 
 
1. incorrectness – like the second interleaving example above, the answer you get might just be wrong 
2. inefficiency – you could lock up the whole computer and always run only one program at a time, but that's horribly 
inefficient 
3. deadlocks – if two programs are competing for the same two resources, there can be deadlocks 
4. unfairness – one program may be unfairly favored to do more work than another 
 
QUESTION: The Dining Politicians Problem. Politicians like to congregate once in a while, eat and spew nonsense. One slow 
Saturday afternoon, three politicians meet to have such wild fun. They sit around a circular table; however, due to the federal 
deficit (funny that these notes are timeless), they are provided with only three chopsticks, each lying in between two people. A 
politician will be able to eat only when both chopsticks next to him are not being used. If he cannot eat, he will just spew 
nonsense. 
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1. Here is an attempt to simulate this behavior: 
 
 (define (eat-talk i) 

    (define (loop) 

       (cond ((can-eat? i) 

              (take-chopsticks i) 

              (eat-a-while) 

                   (release-chopsticks i)) 

                  (else (spew-nonsense))) 

            (loop) 

    (loop)) 

 

 (parallel-execute (lambda () (eat-talk 0)) 

    (lambda () (eat-talk 1)) 

    (lambda () (eat-talk 2))) 

 

 ;; a list of chopstick status, #t if usable, #f if taken 

 (define chopsticks ‘(#t #t #t)) 

 

 ;; does person i have both chopsticks? 

 (define (can-eat? i) 

         (and (list-ref chopsticks (right-chopstick i)) 

    (list-ref chopsticks (left-chopstick i)))) 

 

 ;; let person i take both chopsticks 

 ;; assume (list-set! ls i val) destructively sets the ith element of 

 ;; ls to val 

 (define (take-chopsticks i) 

    (list-set! chopsticks (right-chopstick i) #f) 

    (list-set! chopsticks (left-chopstick i) #f)) 

 

 ;; let person i release both chopsticks 

 (define (release-chopsticks i) 

    (list-set! chopsticks (right-chopstick i) #t) 

    (list-set! chopsticks (left-chopstick i) #t)) 

 

 ;; some helper procedures 

 (define (left-chopstick i) (if (= i 2) 0 (+ i 1))) 

 (define (right-chopstick i) i) 

 

 Is this correct? If not, what kind of hazard does this create? 
 
 
 
 
 
 
 
2. Here's a proposed fix: 
(define protector (make-serializer)) 

(parallel-execute (protector (lambda () (eat-talk 0))) 

(protector (lambda () (eat-talk 1))) 

(protector (lambda () (eat-talk 2)))) 

 Does this work? 
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3. Here’s another proposed fix: use one mutex per chopstick, and acquire both before doing anything: 
(define protectors 

   (list (make-mutex) (make-mutex) (make-mutex))) 

 
(define (eat-talk i) 

   (define (loop) 

      ((list-ref protectors (right-chopstick i)) ‘acquire) 

      ((list-ref protectors (left-chopstick i)) ‘acquire) 

      (cond ... ;; as before) 

      ((list-ref protectors (right-chopstick i)) ‘release) 

      ((list-ref protectors (left-chopstick i)) ‘release) 

      (loop)) 

   (loop)) 

Does that work? 
 
 
 
 
 
 
4. What about this: 
(define m (make-mutex)) 

(define (eat-talk i) 

   (define (loop) 

      (m ‘acquire) 

      (cond ... ;; as before) 

      (m ‘release) 

      (loop)) 

   (loop)) 

 

 

 

 

 

 

5. So what would be a good solution? 
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(Note: This problem is commonly referred to as “The Dining Philosophers” problem. However, here at Berkeley, we prefer to look 
down on politicians rather than philosophers.) 


