
6/29/2011

1

CS61A Lecture 7

2011-06-29

Colleen Lewis

Abstraction, List, & Cons
Very sad code

(define (total hand)

 (if (empty? hand)

 0

 (+ (butlast (last hand))

 (total (butlast hand)))))

STk> (total ‘(3h 10c 4d))

17

STk> (total ‘(3h ks 4d))

;;;EEEK!

Happier Code

(define (total hand)

 (if (empty? hand)

 0

 (+ (rank (one-card hand))

 (total (remaining-cards hand)

))))

(define (rank card) (butlast card))

(define (suit card) (last card))

(define suit last)

(define (one-card hand) (last hand))

(define (remaining-cards hand) (bl hand))

Selectors

Goals

• To talk about things using meaning not how it
is represented in the computer

• To be able to change how it is represented in
the computer without people who use our
program caring

• Invented by: Turing Award Winner:

 Barbara Liskov

Constructors

• GOAL: To talk about things using meaning not how
it is represented in the computer

STk> (total ‘(3h 10c 4d)) ;

STk> (total

 (make-hand

 (make-card 3 ‘heart)

 (make-card 10 ‘club)

 (make-card 4 ‘diamond)))

You still have
to teach

people to use
your program

Constructors

STk> (total

 (make-hand

 (make-card 3 ‘heart)

 (make-card 10 ‘club)

 (make-card 4 ‘diamond)))

(define (make-card rank suit)

 (word rank (first suit)))

(define make-hand se) Constructors

6/29/2011

2

Data Abstraction
(define (total hand)

 (if (empty? hand)

 0

 (+ (rank (one-card hand))

 (total (remaining-cards hand)

))))

(define (rank card)

 (butlast card))

(define (suit card)

 (last card))

(define (one-card hand)

 (last hand))

(define (remaining-cards hand)

 (bl hand))

(define (make-card rank suit)

 (word rank (first suit)))

(define make-hand se)

Try It!

Rewrite what you need to:

• Cards are represented as numbers 1-52

– 1-13 is A-K of Hearts

– 14-26 is A-K of Spades

– 27-39 is A-K of Diamonds

– 40-52 is A-K of Clubs

Runtimes Continued Exponential Runtime

2n

8 4 2 1

1

2

4
8

9

5
10

11

3

6
12

13

7
14

15

0 branches = 1 call
1 branches = 3
2 branches = 7

3 branches = 15

b branches =
2b+1 - 1 calls

~32 ~16 8 4 2 1

6

5

4

3
2

1

0
1

2
1

0

3
2

1

0
1

4

3
2

1

0
1

2
1

0

Fibonacci fibn = fibn-1 + fibn-2

n branches
=

2n+1 - 1 calls

6/29/2011

3

Logarithmic Runtime

Log2(N)

Number Guessing Game

• I’m thinking of a number between 1 and 100

• How many possible guesses could it take you?
(WORST CASE)

• Between 1 and 10000000?

• How many possible guesses could it take you?
(WORST CASE)

8 4 2 1

50

25

12
6

18

37
31

43

75

63
57

69

87
81

93

b branches
=

2b+1 - 1 calls

n possible
numbers &
h calls

n=2h+1-1

Divide and Conquer

• If we can divide the problem up in half
each time
– like the number guessing game

• How many recursive calls will it take?

n is the original problem size
if h calls then:
n=2h+1-1

// Take the log of both sides

// Remember:

Log2(N)

• When we’re able to keep dividing the problem
in half (or thirds etc.)

• Looking through a phone book

6/29/2011

4

Asymptotic Cost

• We want to express the speed of an
algorithm independently of a specific
implementation on a specific machine.

• We examine the cost of the algorithms for
large input sets i.e. the asymptotic cost.

• In later classes (CS70/CS170) you’ll do this
in more detail

Which one is
fastest?

Asymptotic Cost

“Woah! One of
these is WAY

better after this
point. Let’s call
that point N”

Important Big-Oh Sets
Function Common Name

O(1) Constant

O(log n) Logarithmic

O(log2 n) Log-squared

O() Root-n

O(n) Linear

O(n log n) n log n

O(n2) Quadratic

O(n3) Cubic

O(n4) Quartic

O(2n)

Exponential

O(en) Bigger exponential

Subset of

n

Which is fastest after some value N?

WAIT – who cares?
These are all
proportional!

Sometimes we do care,
but for simplicity we

ignore constants

if and only if

)(*)(nfcnT

))(()(nfOnT

for all n > N

Formal definition

6/29/2011

5

Simplifying stuff is important

Cons and Lists

DEMO

cons

STk> (cons 1 2)

(1 . 2)

STk> (define a (cons 1 2))

a

STk> (define b (cons ‘hi ‘bye))

b

STk> b

(hi . bye)

car / cdr

STk> (car a)

1

STk> (cdr a)

2

STk> (car b)

hi

STk> (cdr b)

bye

Data Abstraction

 Pairs

car

cdr

cons

car cdr

Constructors Selectors

Uses of Pair from textbook

X Y

car cdr

num den

car cdr

low high

car cdr

real complex

car cdr

Points Intervals

Fractions Complex #

X Y

car cdr

X Y

car cdr

car cdr

Lines

6/29/2011

6

Lists

Demo

list

STk> (list 1 2 3 4 5)

(1 2 3 4 5)

STk> (list 1)

(1)

STk> (list)

()

STk> (list +)

(#[closure arglist=args 7ff53de8])

Lists are made with pairs!

STk> (define a (list 1 2 3 4))

1

car cdr

2

car cdr

3

car cdr

4

car cdr

a

STk> (define b (list 1 2))

1

car cdr

2

car cdr

b

The Empty List

STk> (cons 2 ‘())

(2)

2

car cdr

How can you make the list (1 2)?

a)(define a (cons 1 2 ‘()))

b)(define a (cons 1 (cons 2)))

c)(define a (cons 1 (cons 2 ‘())))

d)(define a (cons (cons 2 ‘()) 1)))

e)???

1

car cdr

2

car cdr

a

How many calls to cons are made?

STk> (define a (list 1 2 3 4))

1

car cdr

2

car cdr

3

car cdr

4

car cdr

a

A) 2 B) 3 C) 4 D) 5 E) 6

6/29/2011

7

How many calls to cons are made?

STk> (define a (list 1 2 (list 3 4) 5))

A) 2 B) 3 C) 4 D) 5 E) 6

Accessing Elements

Using car and cdr

The Empty List w/ car & cdr

STk> (define x (cons 2 ‘())

x

STk> x

(2)

STk> (car x)

2

STk> (cdr x)

()

2

car cdr

x

How do you get the 2?

STk> (define a (list 1 2 3 4))

1

car cdr

2

car cdr

3

car cdr

4

car cdr

a

A) (car (cdr a))

B) (cdr (car a))

C) (cdr (cdr (car a)))

D) (car (cdr (cdr a)))

E) (cdr (car (car a)))

How do you get the 3?

STk> (define a (list 1 2 (list 3 4) 5))

1

car cdr

2

car cdr car cdr

5

car cdr

a

3

car cdr

4

car cdr A) (car (car (cdr (cdr a))))

B) (cdr (cdr (car (car a))))

C) (cdr (car (cdr (car a))))

D) (car (cdr (car (cdr a))))

E) ???

Cons makes a pair

(cons a b)

A B

car cdr

6/29/2011

8

Dots

Demo

Dots

STk> (cons 1 2)

(1 . 2)

STk> (cons 1 ‘())

(1)

STk> (cons 1 ‘())

(1 .())

1

car cdr

1 2

car cdr

Dots

STk> (cons 1 ‘())

(1 . ())

(1)

STk> (cons 1 (cons 2 ‘()))

(1 . (2 .()))

(1 2)

1

car cdr

1

car cdr

2

car cdr

CONSTRUCTOR SOLUTION

(define (make-card rank suit)

 (cond

 ((equal? suit 'heart) rank)

 ((equal? suit 'spade) (+ rank 13))

 ((equal? suit 'diamond) (+ rank 26))

 ((equal? suit 'club) (+ rank 39))

 (else (error "say what?"))))

SELECTOR SOLUTION

(define (card-rank card)

 (remainder card 13))

(define (suit card)

 (cond

 ((> 14 card) 'heart)

 ((> 27 card) 'spade)

 ((> 40 card) 'diamond)

 (else 'club)))

How many calls to cons are made?

STk> (define a (list 1 2 (list 3 4) 5))

1

car cdr

2

car cdr car cdr

5

car cdr

a

3

car cdr

4

car cdr

A) 2 B) 3 C) 4 D) 5 E) 6

Solution: (cons 1 (cons 2 (cons (cons 3 (cons 4 ‘())) (cons 5 ‘())))))

