7/13/2011

CS61A Lecture 14

2011-07-13

Colleen Lewis

Object Oriented Programming
(OOP)
Overview

Multiple independent intelligent agents

Message passing, local state, inheritance

define-class, instantiate, ask,
method, instance-vars, class-
vars, self, usual, parent

77?7 g Z

Vocab & Scheme keywords

* Class — like a blueprint of an object
—define-class

* Instance of a class — a particular object Methods
—instantiate
* Method — something you can ask an instance
of a class to do.
—method
—ask
. . |
The doubler class Creating objects &

Class name

(define-class (doubler)
(method (say stuff)
(se stuff Ytuff)))

Method
argument
Method variable
name Method

body @

calling methods Class name

STk> (define d (instantiate doubler))
d
On this Creates an
instance of instance of
aclass
Call a aclass .
method Call this With this
method argument
STk> (ask d 'say ' (how are you?))

(how are you? how are you?) @

7/13/2011

Modify the doubler class

(define-class (doubler)
(method (say stuff)
(se stuff stuff)))

STk> (ask d 'add 2 3)

10

STk> (ask d 'add 1 1)

4

‘add is a: A) function B) method C) class D)message

instance variables

instance-vars

Vocab

* Instance variables — variables local to an
instance of a class

—instance-vars

instance-vars
(define-class (counter)

[Instance variable name | L!nitial value

/('nstance—vars (count O)I)
Could add another

Create these .
- variable here. E.g.
variables for each (x 3)

new instance

(method (welcome) |Can be accessed

(se 'my 'count 'is co‘unt))) @

When do you use quotes?

(define-class (counter)
(instance-vars (count 0))
(method (welcome)

(se 'my 'count 'is count)))

STk> (define c¢ (instantiate ounter))

STk> (ask c elcome)
(my count is 0)

If you change the class,
ALWAYS recreate your objects
STk> (load "lectl4.scm")

okay
STk> (define c (instantiate counter))

c
STk> (ask c 'welcome)

(my count is 0)

Which needs a quote?
A) Class name B) method name C) both D) neither @

7/13/2011

Accessing instance variables
(define-class (counter)
(instance-vars (count 0) (x 3))
(method (welcome)

(se 'my 'count 'is count)))

STk> (define c¢ (instantiate counter))

c
STk> (ask ¢ 'count)

Methods for instance
variables are

0 —_— .
STk> (ask ¢ 'x) prOWd?d
3 automatically

set!

Non-functional programming

(A way to change instance variables)

G

Changing instance variables

STk> (define c (instantiate counter))
c

STk> (ask ¢ 'count)

0

STk> (ask ¢ 'next)

1

STk> (ask ¢ 'next)

2

STk> (ask ¢ 'count)

: &

Changing instance variables
(define-class (counter)

(instance-vars (count 0))

Variable to
change

(method (next)

(set! count (+ count 1))

/count))

Non-functional programming
so you may do many things
in one method.

Scheme returns the last one

New value

G

Add a method addXx

(define-class (counter)
(instance-vars (count 0) (x 0)
(method (next)

(set! count (+ count 1))

What was the
argument name in

count))

STk> (ask ¢ 'next)

your addx
1 method?
STk> (ask ¢ 'addX 20) A) x
21 B) argX
STk> (ask c 'x) C)y
20 D) None used @

Concept: Local State

7/13/2011

STk> (define cl (instantiate counter))

cl

STk> (define c2 (instantiate counter))

c2

STk> (ask cl 'next)

1

STk> (ask cl 'mext) Class variables

2 _ —— c2scount

STk> (ask c2 'count) wasn’t changed Uses the keyword class-vars

0

STk> (ask c2 'next)

1

STk> (ask cl 'count) g Z| @
STk> (define cl (instantiate counter))

Vocab cl

STk> (define c2 (instantiate counter))

* Instance variables — variables local to an c2 totalisa
instance of a class STk> (ask cl 'next) class variable
—instance-vars (count: 1 total:_ 1) shared byaII

* Class variables — variables shared by all STk> (ask cl 'next) instances of the
instances of a class (count: 2 total: 2) class
—class-vars STk> (ask cl 'next)

(count: 3 total: 3)/| What will this print?

STk> (ask c2 'next)

A(count: 1 total: 4) B(count: 1 total: 1)
@ C(count: 4 total: 4) D(count: 4 total: 1)

Class variables in Scheme OOP
Counter
(define-class (counter) objects
, respond to
(instance-vars (count 0)) the
(class-vars (total 0))
message
(method (next) "total
(set! count (+ count 1))
(set! total (+ total 1))
(se 'count: count
'total: total)))

&

Instantiation Variables

7/13/2011

Vocab (define-class (beach-bum name)
(instance-vars),surfs #t)))
* Instance variables — variables local to an Instance Instantiation
instance of a class variable variable

— instance-vars)])
STk> (define surfer (instantiate beach-bum 'bob)

* Instance of a class — a particular object

surfer
—instantiat
tnstantiate bl ded STk> (ask surfer 'name) Created
* Instantiation variables — arguments provide .
. bob
when we created the instance of the class. © | differently but

STk> (ask surfer 'surfs)|theyworkthe

gﬂ #t %

Write the meet method
STk> (load "lectld.scm")
okay

STk> (define surfer (instantiate beach-bum 'bob)

The initialization
keyword

surfer

STk> (ask surfer 'meet 'cs6la-class)
(hi cséla-class my name is bob dude) A way to initialize class variables.
'cs6la-class isthe value of an

A) instance variable

B) instantiation variable

C) method argument @ @

surfer-names is....

STk> (define sl (instantiate beach-bum 'bob)) * Class Vocab
sl

STk> (ask sl 'surfer-names) " Instance of a class

(bob) * Method

STk> (define s2 (instantiate beach-bum 'jim))

<2 * Instance variables

STk> (ask sl 'surfer-names) Instance of a class
(jim bob)

A) An instance variable B) An instantiation variablj

Instantiation variables

Class variables

C) Aclass variable D) Something else

7/13/2011

Initializing
class-vars

This is the FIRST
initial value

(define-class (beach-bum name)

(class-vars (surfer-names '()))
If other instances of
the class already

exist, do this

N We already knew
how to make class
variables

(initialize//

(set! surfer-names (se name surfer-names)))

(method (say stuff) Z

(se stuff 'dude)))

SOLUTION
Modify the doubler class

(doubler)
(method (say stuff)
Method stuff stuff))

name

(define-class

Method

arguments

(method (add numl‘num?2)

(* 2 (+ numl num2))))

Method
body

\

Solution addX

(define-class (counter)

(instance-vars (count 0)

(method (addX argX)

(x 0))

(set! count (+ count argX))

t! X
(se X arg\)

meet solution

(define-class (beach-bum name)

(surfs #t))
(method (meet someone)

(instance-vars

(se 'hi someone

'my 'name 'is name

'dude
count)) | don’t want the)
argument to be named x
b/c then | would need to
write (set! x x) @
Vocab * Instance variables Vocab
* Class — variables local to an instance of a class
— like a blueprint of an object —instance-vars
—define-class * Instance of a class
* Instance of a class — a particular object
— a particular object —instantiate
—instantiate * Instantiation variables
¢ Method — arguments provided when we created the instance of
the class.
— something you can ask an instance of a class to .
do. * Class variables
—method — variables shared by all instances of a class
—ask @ —class-vars @

