
7/13/2011

1

CS61A Lecture 14

2011-07-13

Colleen Lewis

Object Oriented Programming
(OOP)

Overview

Multiple independent intelligent agents

Message passing, local state, inheritance

define-class, instantiate, ask,

method, instance-vars, class-

vars, self, usual, parent

????

Vocab & Scheme keywords

• Class – like a blueprint of an object
– define-class

• Instance of a class – a particular object

– instantiate

• Method – something you can ask an instance
of a class to do.
– method

– ask

Methods

The doubler class

(define-class (doubler)

 (method (say stuff)

 (se stuff stuff)))

Class name

Method
name Method

body

Method
argument
variable

Creating objects &
calling methods

STk> (define d (instantiate doubler))

d

STk> (ask d 'say '(how are you?))

(how are you? how are you?)

Class name

Creates an
instance of

a class
Call a

method

On this
instance of

a class

Call this
method

With this
argument

7/13/2011

2

Modify the doubler class

(define-class (doubler)

 (method (say stuff)

 (se stuff stuff)))

STk> (ask d 'add 2 3)

10

STk> (ask d 'add 1 1)

4

‘add is a: A) function B) method C) class D)message

instance variables

instance-vars

Vocab

• Instance variables – variables local to an
instance of a class
– instance-vars

instance-vars
(define-class (counter)

 (instance-vars (count 0))

 (method (welcome)

 (se 'my 'count 'is count)))

Create these
variables for each

new instance

Instance variable name Initial value

Could add another
variable here. E.g.

(x 3)

Can be accessed

When do you use quotes?

(define-class (counter)

 (instance-vars (count 0))

 (method (welcome)

 (se 'my 'count 'is count)))

STk> (define c (instantiate counter))

c

STk> (ask c 'welcome)

(my count is 0)

Which needs a quote?

A) Class name B) method name C) both D) neither

?

?

If you change the class,
ALWAYS recreate your objects

STk> (load "lect14.scm")

okay

STk> (define c (instantiate counter))

c

STk> (ask c 'welcome)

(my count is 0)

7/13/2011

3

Accessing instance variables
(define-class (counter)

 (instance-vars (count 0) (x 3))

 (method (welcome)

 (se 'my 'count 'is count)))

STk> (define c (instantiate counter))

c

STk> (ask c 'count)

0

STk> (ask c 'x)

3

Methods for instance
variables are

provided
automatically

set!

Non-functional programming

(A way to change instance variables)

Changing instance variables

STk> (define c (instantiate counter))

c

STk> (ask c 'count)

0

STk> (ask c 'next)

1

STk> (ask c 'next)

2

STk> (ask c 'count)

2

Changing instance variables
(define-class (counter)

 (instance-vars (count 0))

 (method (next)

 (set! count (+ count 1))

 count))

 Non-functional programming
so you may do many things

in one method.
Scheme returns the last one

New value

Variable to
change

Add a method addX
(define-class (counter)

 (instance-vars (count 0) (x 0))

 (method (next)

 (set! count (+ count 1))

 count))

STk>(ask c 'next)

1

STk> (ask c 'addX 20)

21

STk> (ask c 'x)

20

What was the

argument name in
your addX

method?
A) x

B) argX

C) y

D) None used

Concept: Local State

7/13/2011

4

STk> (define c1 (instantiate counter))

c1

STk> (define c2 (instantiate counter))

c2

STk> (ask c1 'next)

1

STk> (ask c1 'next)

2

STk> (ask c2 'count)

0

STk> (ask c2 'next)

1

STk> (ask c1 'count)

2

c2’s count

wasn’t changed

Class variables

Uses the keyword class-vars

Vocab

• Instance variables – variables local to an
instance of a class
– instance-vars

• Class variables – variables shared by all
instances of a class

– class-vars

STk> (define c1 (instantiate counter))

c1

STk> (define c2 (instantiate counter))

c2

STk> (ask c1 'next)

(count: 1 total: 1)

STk> (ask c1 'next)

(count: 2 total: 2)

STk> (ask c1 'next)

(count: 3 total: 3)

STk> (ask c2 'next)

A(count: 1 total: 4) B(count: 1 total: 1)

C(count: 4 total: 4) D(count: 4 total: 1)

total is a

class variable
shared by all

instances of the
class

What will this print?

Class variables in Scheme OOP

(define-class (counter)

 (instance-vars (count 0))

 (class-vars (total 0))

 (method (next)

 (set! count (+ count 1))

 (set! total (+ total 1))

 (se 'count: count

 'total: total)))

Counter
objects

respond to
the

message
'total

Instantiation Variables

7/13/2011

5

Vocab

• Instance variables – variables local to an
instance of a class
– instance-vars

• Instance of a class – a particular object

– instantiate

• Instantiation variables – arguments provided
when we created the instance of the class.

(define-class (beach-bum name)

 (instance-vars (surfs #t)))

STk> (define surfer (instantiate beach-bum 'bob))

surfer

STk> (ask surfer 'name)

bob

STk> (ask surfer 'surfs)

#t

Instantiation
variable

Instance
variable

Created
differently but
they work the

same way

Write the meet method
STk> (load "lect14.scm")

okay

STk> (define surfer (instantiate beach-bum 'bob))

surfer

STk> (ask surfer 'meet 'cs61a-class)

(hi cs61a-class my name is bob dude)

'cs61a-class is the value of an

A) instance variable

B) instantiation variable

C) method argument

The initialization
keyword

A way to initialize class variables.

surfer-names is….
STk> (define s1 (instantiate beach-bum 'bob))

s1

STk> (ask s1 'surfer-names)

(bob)

STk> (define s2 (instantiate beach-bum 'jim))

s2

STk> (ask s1 'surfer-names)

(jim bob)

A) An instance variable B) An instantiation variable

C) A class variable D) Something else

Vocab • Class

• Instance of a class

• Method

• Instance variables

• Instance of a class

• Instantiation variables

• Class variables

7/13/2011

6

Initializing
class-vars

(define-class (beach-bum name)

 (class-vars (surfer-names '()))

 (initialize

 (set! surfer-names (se name surfer-names)))

 (method (say stuff)

 (se stuff 'dude)))

We already knew
how to make class

variables

This is the FIRST
initial value

If other instances of
the class already

exist, do this

SOLUTION
Modify the doubler class

(define-class (doubler)

 (method (say stuff)

 (se stuff stuff))

 (method (add num1 num2)

 (* 2 (+ num1 num2))))

Method
name

Method
arguments

Method
body

Solution addX

(define-class (counter)

 (instance-vars (count 0) (x 0))

 (method (addX argX)

 (set! count (+ count argX))

 (set! x argX)

 count))

I don’t want the

argument to be named x
b/c then I would need to

write (set! x x)

meet solution

(define-class (beach-bum name)

 (instance-vars (surfs #t))

 (method (meet someone)

 (se 'hi someone

 'my 'name 'is name

 'dude)))

Vocab
• Class

– like a blueprint of an object

– define-class

• Instance of a class

– a particular object

– instantiate

• Method

– something you can ask an instance of a class to
do.

– method

– ask

Vocab • Instance variables

– variables local to an instance of a class

– instance-vars

• Instance of a class

– a particular object

– instantiate

• Instantiation variables

– arguments provided when we created the instance of
the class.

• Class variables

– variables shared by all instances of a class

– class-vars

