7/13/2011

CS61A Lecture 15

2011-07-14

Colleen Lewis

REVIEW: define the animal class

STk> (define animall (instantiate animal 'fred))
animall

STk> (ask animall 'age)

0

STk> (ask animall 'eat)

yum

STk> (ask animall 'name)

fred

Do you want: A) live coding B) Chalk C) PowerPoint

Inheritance

Set another class as a parent and
then use all of their methods!

&

dogs inherit from animals
(& can call parent methods)

(define-class (dog)

(parent (animal 'doggy—name;))
STk> (define dogl (instantiate dog))
dogl
STk> (ask dogl 'eat)
yum

I don’t have an 'eat
method. Let me ask
my parent

v

Can call methods of
parent on instances
of the child class

(define-class (dog)

STk> (define dogl (instantiate dog))
dogl
STk> (ask dogl '7ge) (

0

dogs inherit from animals

(& can call parent’s automatically generated methods)

(parent (animal 'doggy-name)))

I don’t have an 'age
method. Let me ask

my parent

Can call automatically
generated methods in the
parent class with instances

of the child class

Children can not access parent’s
instance-vars directly
(define-class (dog)
(parent (animal 'doggy-name))
(method (say-name)
(se 'woof name)))

’

BAD BAD BAD!

This doesn’t work!

7/13/2011

self

A way to ask yourself to call methods

&

define-class (dog)
(parent (animal 'doggy-name))
(method (say-name)

(se 'woof (asklself"name))))

I don’t have an
‘name method. Let
me ask my parent

You can ask
self things

Excessively tricky case

(define-class (tricky)

(instance-vars (x 3))
(method (weird x)
(* x (ask self 'x))))
(define trick
STk>
A)9

(ask trick 'weird 4)

B) 16)12 D) Other

(instantiate tricky))

&

You can do recursion with

methods
(define-class
(method
(1f

(math-wiz)
(factorial n)
(< n 2)
1
(* n

(ask self

'factorial

(= n 1))))))

G

Overriding methods

The surferl class overrides the

parent’s say method
(define-class
(method

(person)
(say sent)
(se sent '!)))

(define-class (surferl)

(parent (person))

(method (say sent)

(se sent 'dude)))

(7

7/13/2011

Creating a person object Creating a surferl object
(define-class (person) (define-class (surferl) | want it to
(method (say sent) (parent (person)) work more
(se sent '!))) (method (say sent) like the
(se sent 'dude))) parent
STk> (define pl (instantiate person))
pl STk> (define sl (instantigte surferl))
STk> (ask pl 'say ' (happy birthday)) sl
(happy birthday !) STk> (ask sl 'say

' (Happy birthday))
(happy birthday dude

&

Call the usual method
(the one you had overridden)

(define-class (person)

(method (say sent)
usual (se sent '!)))

(define-class (surfer2?)

Explicitly call the parent’s method
(person))

(parent
(method
(usual

(say sent)
(se sent 'dude))))

G

'say

&

Call the usual method)
. Would this have worked?
(the one you had overridden)
(define-class (surfer?) (define-class (person)
(parent (person)) (method (say sent)
(method (say sent) (se sent '!)))
(usual 'say (se sent 'dude))))
(define-class (surfer?)
STk> (define s2 (instantiate surfer2)) (parent (person))
s2 (method (say sent)
STk> (ask s2 'say ' (happy birthday)) (ask self 'say (se sent 'dude)))
(happy birthday dude !) @ A) Yes B) No C) Sometimes @

7/13/2011

parent class

(define-class (person)
(method (say sent)
(se sent '!))
(method (meet someone)

o1
STk> (ask pl 'meet 'eric)
(hello eric !)

Calling an overridden method in a

(ask self 'say (se 'hi someone)))

STk> (define pl (instantiate person))

&

Calling an overridden method in a parent class
(define-class (person)
(method (say sent)
(se sent '!))
(method (meet someone)
(ask self 'say (se 'hi someone)))|)
STk> (define s2 (instantiate surfer2))
s 2
STk> (ask s2 'meet 'kevin)
A) (hello kevin dude) B) ERROR
C) (hello kevin !)

D) (hello kevin
FF) (hello kevin dude !)

default-method

Will run if there is no match to the
message passed to ask

&

Writing a default-method

(define-class (polite-person)
(parent (person))
(default-method

(se '(sorry I do not have a method named)

message)))
(define pp (instantiate polite-person))
STk> (ask pp 'whatz-up?)
(sorry i do not have a method named whatz-up?)
STk> (ask pp 'whatz-up? 'dude)

(sorry i do not have a method named whatz-up?)

The doubler class

(define-class (doubler)
(method (say stuff)

(se stuff Ytuff)))

Creating objects &
calling methods

STk> (define d (instantiate doubler))
d

STk> (ask d 'say ' (how are you?))
(how are you? how are you?)

(7

7/13/2011

. Initializing
instance-vars
class-vars

(define-class (counter)
| | (define-class (beach-bum name)
\\\\\ (class-vars_ (surfer—-names ' ()))

/;}nstance—vars (count O)I)

(initialize//
I (set! surfer-names (se name surfer-names)))
(method (welcome) . . | (method (say stuff)
(se 'my 'count 'is count))) @I (se stuff 'dude))) @
Let review

(define (sum-sqg a b)
(let ((a2 (* a a))
Rewriting a let as a 1lambda (b2 (* b b)))
(+ a2 b2)))
STk> (sum-sqg 2 3)

What does this return?
A)9 B) 10 c)11 D) 12 E)13

& (7

Rewrite the 1let with lambda

Let review
(define (sum-sgq a b)
(let ((a2 (* a a)) (define (funct x)
(2 * b b))) (let ((a 3) (b 4) (c 6))
(+ a b c x)))

(+ a2 b2)))

(define (sum-sg a b)

((1ambda (a2 b2) (+ a2 b2))

Caa) bo) & (7

7/13/2011

STk> (define d (instantiate doubler))
d
On this Creates an
instance of instance of
aclass
Call a aclass .
method Call this With this
method argument
STk> (ask d 'say ' (how are you?))

(how are you? how are you?)

(define-class (animal name) Class name
(instance-vars (age 0)) (define-class (doubler)
(method (eat) (method (say stuff)

'yum)) (se stuff stuff)))
Method
argument

Method variable
name Method
. - | -
Creating objects & instance-vars

calling methods

Class name

&

(define-class

/('nstance—vars (count O)I)
Could add another

(counter)

[Instance variable name | L!nitial value

variables for each

Create these variable here. E.g.

(x 3)

new instance

(method (welcome) |Can be accessed
. \Y c
(se 'my 'count 'is count))) @

Initializing
class-vars

(define-class

(class-vars_ (surfer—-names

(beach-bum name)

do this after you
make sure all the
class-vars exist

This is the FIRST
initial value

"))

N

(initialize/

(set! surfer-names

class variables are
shared with all
instances of the
class

(se name surfer-names)))

(method (say stuff)

ff !

&

Rewrite the 1let with lambda

(define (funct x)
(let ((a 3) (b 4)
(+ a b c x)))

(c 6))

(define (funct2 x)
((lambda (a b ¢c) (+ a b ¢ x))
34 6))

(7

