
7/13/2011

1

CS61A Lecture 15

2011-07-14

Colleen Lewis

REVIEW: define the animal class
STk> (define animal1 (instantiate animal 'fred))

animal1

STk> (ask animal1 'age)

0

STk> (ask animal1 'eat)

yum

STk> (ask animal1 'name)

fred

Do you want: A) live coding B) Chalk C) PowerPoint

Inheritance

Set another class as a parent and
then use all of their methods!

dogs inherit from animals
(& can call parent methods)

(define-class (dog)

 (parent (animal 'doggy-name)))

STk> (define dog1 (instantiate dog))

dog1

STk> (ask dog1 'eat)

yum

I don’t have an 'eat
method. Let me ask

my parent

Can call methods of
parent on instances

of the child class

(define-class (dog)

 (parent (animal 'doggy-name)))

STk> (define dog1 (instantiate dog))

dog1

STk> (ask dog1 'age)

0

I don’t have an 'age
method. Let me ask

my parent
Can call automatically

generated methods in the
parent class with instances

of the child class

dogs inherit from animals
(& can call parent’s automatically generated methods)

Children can not access parent’s
instance-vars directly

(define-class (dog)

 (parent (animal 'doggy-name))

 (method (say-name)

 (se 'woof name)))

BAD BAD BAD!
This doesn’t work!

7/13/2011

2

self

A way to ask yourself to call methods

define-class (dog)

 (parent (animal 'doggy-name))

 (method (say-name)

 (se 'woof (ask self 'name))))

I don’t have an
‘name method. Let

me ask my parent
You can ask
self things

Excessively tricky case

(define-class (tricky)

 (instance-vars (x 3))

 (method (weird x)

 (* x (ask self 'x))))

(define trick (instantiate tricky))

STk> (ask trick 'weird 4)

A) 9 B) 16 C) 12 D) Other

You can do recursion with
methods

(define-class (math-wiz)

 (method (factorial n)

 (if (< n 2)

 1

 (* n

 (ask self

 'factorial

 (- n 1))))))

Overriding methods

The surfer1 class overrides the
parent’s say method

(define-class (person)

 (method (say sent)

 (se sent '!)))

(define-class (surfer1)

 (parent (person))

 (method (say sent)

 (se sent 'dude)))

7/13/2011

3

Creating a person object

(define-class (person)

 (method (say sent)

 (se sent '!)))

STk> (define p1 (instantiate person))

p1

STk> (ask p1 'say '(happy birthday))

(happy birthday !)

Creating a surfer1 object

(define-class (surfer1)

 (parent (person))

 (method (say sent)

 (se sent 'dude)))

STk> (define s1 (instantiate surfer1))

s1

STk> (ask s1 'say '(happy birthday))

(happy birthday dude)

I want it to
work more

like the
parent

usual

Explicitly call the parent’s method

Call the usual method
(the one you had overridden)

(define-class (person)

 (method (say sent)

 (se sent '!)))

(define-class (surfer2)

 (parent (person))

 (method (say sent)

 (usual 'say (se sent 'dude))))

(define-class (surfer2)

 (parent (person))

 (method (say sent)

 (usual 'say (se sent 'dude))))

STk> (define s2 (instantiate surfer2))

s2

STk> (ask s2 'say '(happy birthday))

(happy birthday dude !)

Call the usual method
(the one you had overridden)

Would this have worked?

(define-class (person)

 (method (say sent)

 (se sent '!)))

(define-class (surfer2)

 (parent (person))

 (method (say sent)

 (ask self 'say (se sent 'dude))))

A) Yes B) No C) Sometimes

7/13/2011

4

Calling an overridden method in a
parent class

(define-class (person)

 (method (say sent)

 (se sent '!))

 (method (meet someone)

 (ask self 'say (se 'hi someone))))

STk> (define p1 (instantiate person))

p1

STk> (ask p1 'meet 'eric)

(hello eric !)

Calling an overridden method in a parent class

(define-class (person)

 (method (say sent)

 (se sent '!))

 (method (meet someone)

 (ask self 'say (se 'hi someone))))

STk> (define s2 (instantiate surfer2))

s2

STk> (ask s2 'meet 'kevin)

A) (hello kevin dude) B) ERROR

C) (hello kevin !) D)(hello kevin)

E) (hello kevin dude !)

default-method

Will run if there is no match to the
message passed to ask

Writing a default-method

(define-class (polite-person)

 (parent (person))

 (default-method

 (se '(sorry I do not have a method named)

 message)))

(define pp (instantiate polite-person))

STk> (ask pp 'whatz-up?)

(sorry i do not have a method named whatz-up?)

STk> (ask pp 'whatz-up? 'dude)

(sorry i do not have a method named whatz-up?)

The doubler class

(define-class (doubler)

 (method (say stuff)

 (se stuff stuff)))

Class name

Method
name Method

body

Method
argument
variable

Creating objects &
calling methods

STk> (define d (instantiate doubler))

d

STk> (ask d 'say '(how are you?))

(how are you? how are you?)

Class name

Creates an
instance of

a class
Call a

method

On this
instance of

a class

Call this
method

With this
argument

7/13/2011

5

instance-vars
(define-class (counter)

 (instance-vars (count 0))

 (method (welcome)

 (se 'my 'count 'is count)))

Create these
variables for each

new instance

Instance variable name Initial value

Could add another
variable here. E.g.

(x 3)

Can be accessed

Initializing
class-vars

(define-class (beach-bum name)

 (class-vars (surfer-names '()))

 (initialize

 (set! surfer-names (se name surfer-names)))

 (method (say stuff)

 (se stuff 'dude)))

class variables are
shared with all

instances of the
class

This is the FIRST
initial value

do this after you
make sure all the

class-vars exist

Rewriting a let as a lambda

Let review

(define (sum-sq a b)

 (let ((a2 (* a a))

 (b2 (* b b)))

 (+ a2 b2)))

STk> (sum-sq 2 3)

What does this return?

A) 9 B) 10 C) 11 D) 12 E)13

Let review
(define (sum-sq a b)

 (let ((a2 (* a a))

 (b2 (* b b)))

 (+ a2 b2)))

(define (sum-sq a b)

 ((lambda (a2 b2) (+ a2 b2))

 (* a a) (* b b))

Rewrite the let with lambda

(define (funct x)

 (let ((a 3) (b 4) (c 6))

 (+ a b c x)))

7/13/2011

6

animal Solution

(define-class (animal name)

 (instance-vars (age 0))

 (method (eat)

 'yum))

The doubler class

(define-class (doubler)

 (method (say stuff)

 (se stuff stuff)))

Class name

Method
name Method

body

Method
argument
variable

Creating objects &
calling methods

STk> (define d (instantiate doubler))

d

STk> (ask d 'say '(how are you?))

(how are you? how are you?)

Class name

Creates an
instance of

a class
Call a

method

On this
instance of

a class

Call this
method

With this
argument

instance-vars
(define-class (counter)

 (instance-vars (count 0))

 (method (welcome)

 (se 'my 'count 'is count)))

Create these
variables for each

new instance

Instance variable name Initial value

Could add another
variable here. E.g.

(x 3)

Can be accessed

Initializing
class-vars

(define-class (beach-bum name)

 (class-vars (surfer-names '()))

 (initialize

 (set! surfer-names (se name surfer-names)))

 (method (say stuff)

 (se stuff 'dude)))

class variables are
shared with all

instances of the
class

This is the FIRST
initial value

do this after you
make sure all the

class-vars exist

Rewrite the let with lambda

(define (funct x)

 (let ((a 3) (b 4) (c 6))

 (+ a b c x)))

(define (funct2 x)

 ((lambda (a b c) (+ a b c x))

 3 4 6))

