
7/28/2011

1

CS61A Lecture 23

2011-07-28

Colleen Lewis

1

scheme-1 Review
(define (scheme-1)

 (display "Scheme-1: ")

 (flush)

 (print (eval-1 (read)))

 (scheme-1))

Whatever you

typed in is treated
as a list eval-1 evaluated

these lists

Infinite loop

Metacircular Evaluator (MCE)
read-eval-print loop

(define (driver-loop)

 (prompt-for-input input-prompt)

 (let ((input (read)))

 (let ((output

 (mc-eval input

 the-global-environment)))

 (announce-output output-prompt)

 (user-print output)))

 (driver-loop))

3

The big idea!

Today’s Plan

• Is mc-eval basically the same as eval-1?

– Yes

• Is mc-apply basically the same as apply-1?

– Yes

• How is this different than scheme-1?

– Everything has its own ADT!

– We have environments and can define things!

4

The big idea!

(define (mc-eval exp env)

 (cond

 ((self-evaluating? exp)...

 ((variable? exp)...

 ((quoted? exp) ...

 ((assignment? exp) ...

 ((definition? exp) ...

 ((if? exp) ...

 ((lambda? exp) ...

 ((begin? exp) ...

 ((cond? exp) ...

 ((application? exp) ...

 (else (error “what?"))))

5

(define (mc-eval exp env)

 (cond

 ((self-evaluating? exp)...

 ((variable? exp)...

 ((quoted? exp) ...

 ((assignment? exp) ...

 ((definition? exp) ...

 ((if? exp) ...

 ((lambda? exp) ...

 ((begin? exp) ...

 ((cond? exp) ...

 ((application? exp) ...

 (else (error “what?"))))

6

(mc-eval '(sq 3) '())

Is caught by:
A. quoted?
B. lambda?
C. application?

(mc-eval 'x '())

Is caught by:
A. self-evaluating?
B. variable?
C. quoted?

7/28/2011

2

More things create/use ADTs
(makes not-new stuff different)

STk> (eval-1 '(lambda (x) (* x x)))

(lambda (x) (* x x))

STk> (mc-eval '(lambda (x) (* x x)) '())

(procedure (x) ((* x x)) ())

7

ADT overkill?
This is tagged with procedure, but we

already had it tagged with lambda.

What do environments look
like?

8

Frames in MCE
(below the line)

((x y) . (2 4))

or

((x y) 2 4)

9

Global

x: 2

y: 4

E1

a: 5

b: 7

c: 3

 ((a b c) . (5 7 3))

or

((a b c) 5 7 3)

(define (frame-variables frame)

 (car frame))

(define (frame-values frame)

 (cdr frame))

Environments
(below the line)

List of frames!
(define the-empty-environment '())

(extend-environment

 '(x y) ;; vars

 '(2 4) ;; vals

 the-empty-environment) ;; base-env

(define (extend-environment vars vals base-env)

 (cons

 (make-frame vars vals)

 base-env))

1
0

Error checking
omitted

Environments
(below the line)

List of frames!
(define the-empty-environment '())

(extend-environment

 '(x y) ;; vars

 '(2 4) ;; vals

 the-empty-environment) ;; base-env

11

car cdr

((x y).(1 2))

Global

x: 2

y: 4

Frame

Environment

Environments
(Below the line)

12

Global

x: 2

y: 4

E1

a: 5

b: 7

c: 3

car cdr

((x y).(1 2))

car cdr

((a b c).(5 7 3))

7/28/2011

3

1
3

Global

x: 2

y: 4

E3

a: 5

b: 7

c: 3

E1

E2

E3 is the current frame. Draw the
environment. How many elements
are in the list you made?

A. 1 B. 2 C. 3 D. 4 E. 5

How do we look-up values from
environments?

(define (scan vars vals)

 (cond

 ((null? vars)

 ...) ;; look in enclosing env.

 ((eq? var (car vars))

 (car vals))

 (else

 (scan (cdr vars) (cdr vals)))))

1
4

How do we look-up values from
environments? (continued)

(define (lookup-variable-value var env)

 (define (env-loop env)

 (if (eq? env the-empty-environment)

 (error "Unbound variable" var)

 (let ((frame (first-frame env)))

 (scan (frame-variables frame)

 (frame-values frame)))))

 (env-loop env))

1
5

How do we look-up values from
environments?

(define (scan vars vals)

 (cond

 ((null? vars)

 (env-loop

 (enclosing-environment env)))

 ((eq? var (car vars))

 (car vals))

 (else

 (scan (cdr vars) (cdr vals)))))

1
6

How many times is scan called?

A. Once for each frame

B. Once for each variable in the environment

C. Once for each variable you are looking up

Write a definition for

(enclosing-environment env)

17

What does this environment look
like?

18

STk>(define a 3)

STk>(define sq (lambda (x) (* x x)))

Params: x

Body: (* x x)

Global

a: 3

sq:

car cdr

((a sq).(3 ???))

7/28/2011

4

What is a procedure?

STk> (mc-eval '(lambda (x) (* x x)) '(((a) 3)))

(procedure (x) ((* x x)) (((a) 3)))

1
9

car cdr

((a).(3)) Params: x

Body: (+ x x)

Global

a: 3

procedure

car cdr

(x)

car cdr

((* x x))

car cdr car cdr

What does this environment look like?

2
0

STk>(define a 3)

STk>(define sq (lambda (x) (* x x)))

Params: x

Body: (* x x)

Global

a: 3

sq:

car cdr

((a sq).(3 (procedure (x) ((* x x))___)))

The environment

Printing Environments is…

A. going to be really helpful to see what is going
on in mc-eval

B. not going to be possible because they are
really big

C. not going to be possible because they
contain infinite structures

2
1

What would scheme print (wwsp)?

(define (my-scope x)

 (lambda () x))

(define (current-scope x thunk)

 (thunk))

STk> (define my-thunk (my-scope 3))

my-thunk

STk> (current-scope 4 my-thunk)

Prints:

A. 3 B. 4 C. error D. ???

2
2

Lexical vs. Dynamic Scope

• Scheme – Lexical Scope

– Extend the frame that the procedure was created
in

• Logo – Dynamic Scope

– Extend the frame that the procedure was called
from

23

LOGO

Demo

24

7/28/2011

5

Commands versus Operations

• In LOGO procedures are divided into

– Operations – return values

– Commands – don’t return values

• You have to start each instruction with a
command

print sum 2 3

2
5

Parentheses can be used

print (sum 2 3 4 5)

print 3*(4+5)

2
6

Variables vs. Procedures

• We can have a function and a variable with
the same name in LOGO.

• How to make a variable:

make "x 10

print :x

make "sum 15

print sum :x :sum

2
7

Quoting things in LOGO

• We use " instead of single quotes.

make "name "colleen

print :name

make "my-sent [a b c]

print :my-sent

2
8

There are no special forms!

• We can just quote things by putting them in [] and

then they won’t be evaluated –WOW!

ifelse 2=3 [print "hi] [print "bye]

29

Defining a function

• We use the word “to” - “to teach logo a new
word”.

? to add-up :x :y :z

> sum :x :y :z

> end

? print add-up 1 2 3

30

7/28/2011

6

Scope - We have frames

• We have frames so calling a function creates a
new bind – it doesn’t change the global frame

? make "x 10

? to add-up :x :y :z

> sum :x :y :z

> end

? print add-up 1 2 3

? print :x

3
1

New frames extend the CURRENT environment
(not the environment in which they were created)

? make "pi 3.14

? to area

> :radius * :pi

> end

? to mess-up :pi

> area 5

> end

? mess-up 4

3
2

THE
BIG

IDEA!
Will LOGO return:

A. 20 B. 15.70 C. ??

Solutions

3
3

3
4

Global

x: 2

y: 4

E3

a: 5

b: 7

c: 3

car cdr

((x y).(1 2))

car cdr

((a b c).(5 7 3))

E1

E2

car cdr

(().())

E3 is the current frame. Draw the
environment. How many elements
are in the list you made?

A. 1 B. 2 C. 3 D. 4 E. 5

