8/3/2011

CS61A Lecture 26

2011-08-03
Colleen Lewis

&

In the REGULAR version
Where do arguments get evaluated?

A.Inmc-eval

B.Inmc-apply

C. In both

D. In neither
E.???

Changes to mc-eval for the lazy evaluator

(define (mc-eval exp env) ‘S"\)}
(cond ... §
((application? exp)
(mc-apply (mc-eval (operator exp) env)

(list-of-values (operands exp) env)))

(define (mc-eval exp env)

o

'_K‘-J
(cond ... h o]
f) 4
((application? exp)
(mc-apply | (actual-value| (operator exp) env)

—trist—of—vatues (operands exp) envf))

The lazy mc-apply N\)

DO evaluate the
arguments

Primitive

procedure

mc-apply

&3“'_2
)
YLD

Don’t evaluate
the arguments

Compound
(User defined)

Procedure

G

THE RULES

The lazy mc-eval might return a Thunk ADT, we should
Force these:

* Before you print something returned by mc-eval
» Before you pass arguments to a primitive procedure

— 1f is LIKE a primitive procedure the predicate shouldn’t
be a Thunk ADT.

We should CREATE Thunk ADTs (delay stuff)
 Before you pass arguments to a compound

procedure g ﬂ

The RANGE of mc-eval includes
Thunk ADTs o

| /

STk> (load "lazy.scm") %

okay =

STk> (define g-env (setup-environment))

g-env

STk> (mc-eval '((lambda (x) x) (+ 2 3)) g-env)

(thunk, (+ 2 3) >

mc-eval may
return a Thunk ADT

User-defined
procedure:
Don’t evaluate

the arguments
——

8/3/2011

Tracing a call that returns
a Thunk ADT from mc-eval
(define (mc-eval exp env)

(cond ... _m;‘_?))\\

((application? exp) N .|
(mc-apply '
(actual-value (operator exp) env)

“ttrst=of=vatues (operands exp) envf))

]
STk> (mc-eval ' (|(lambda (x) x) |[(+ 2 3)) g-env)

Tracing a call that returns
a Thunk ADT from mc-eval
STk> (mc-eval ' (/(lambda (x) x)| | (+ 2 3)) g-env)

v
' (procedure (x) (X)J,)

(define (mc-apply procedure arguments env)
(cond ..
((compound-procedure? procedure

Does this call
force—-it?
A.YB.NC.?

(eval-sequence =————

(procedure-body procedure)

(extend-environment

variables (procedure-parameters procedure)

values ~(list-of-delayed-args arguments env)

old env I~ (procedure-environment procedure))))

Replace a call to mc-eval
to avoid printing a Thunk ADT

(define (driver-loop) &\a\h
(prompt-for-input input-prompt) w %
(let ((input (read))) f)//‘-r_‘

(let ((output ’ i
(actual-value input the-global-environment))

(announce-oufput output-prompt)
mc-eval might
return a delayed

(user-print tput)))

(driver-loop))

01l

if’s need actual values!

mc-eval

i i sometimes
(define (eval-if exp env) returns
(1f (true? Thunk
(actual-value ADTs

(if-predicate exp)
env))
(mc-eval (if-consequent exp) env)

(mc-eval (if-alternative exp) env)))

else (error “what?")))) D.?? @

. rgument from
This was: argument Od a
me-eval compoun
procedure @
(define (mc-eval exp env) ™ : actual-value 8 B
(cond % (define (actual-value exp env) %
) g (force-it (mc-eval exp env))) o
self-evaluating? e

((. bj ?u ing? exp) Should we adg

((variable? exp)... a Thunk? (define (force-it obj)

((quoted? exp) check to mc- (if (thunk? obj)

((assignment? exp) ... eval? (actual-value (thunk-exp obj)
((definition? exp) ... A. No — not (thunk-env obj))

(£ exp) necessary o) I S I i
((lambda? exp) ...

. b B. No handled (define (force-it-FAKE obj) thunk @

((begin? exp) by another (if (thunk? obq)

((cond? exp) ... case (mc-eval (thunk-exp obj)
((application? exp) ... B. Yes

(

(thunk-env obj))
obj)) @

8/3/2011

1

Example of why we call actual-value |

ST (1oad "1any. scnt) If we're going to delay-it we need to
okay ™ keep track of the environment!

STk> (define g-env (setup-environment)) %

g-eny) (define (delay-it exp env)

STk> (mc-eval
'((lambda (x) x)

((lambda (y) y) ﬂE .E .ﬂ
+ 2 3)))
g-env) thunk (+ 2 x)
. (thunk ((lambda (y) y) (+ 2 3)) €5) When | get forced:
)

.(thunk ((lambda (x) x) (+ 2 3)) evaluate the exp in
C(thunk (A (x) %) (A () y) (+ 2 3)))€Eiesd)

. this environment @
e. 2?7

(list 'thunk exp env)

Q 0 o w

EY

Why you need to evaluate Thunk ADTs
in their original environment —@ID
STk> (define (crazy arg) .

Params: arg Params: x
Body: (let..
(let ((x 3)) WRONG way: ! y: (le Body: (+ x... Doe§ the
I (+ x arg arg))) \9 WlthOUt Old GIObal ﬂ Q thll’d
STk> (define x 4) environment 5 are: 3 element
STk> (crazy (+ x 1)) T : 8- . point to:
[(crazy (+ x 1) | | (crazy (+ x 1)) A. Global
cdr car y
’ (crazy 5) ‘ | (* x arg arg) n! EE !F" E E;
[(* x arg arg) | [(* 3 (+x 1)+ x 1)) thunk (1) D. None
- E.??
’ (* 355 I F3@#s3sHE sy E| Current frame: Glebal E1 E2 _d
Summary & Additional Notes Run (query) and tell it some facts
* Thunk ADTs could also be memoized STk> (load "query.scm")
* We delayed arguments to compound okay Like (mce): itstarts
STk> _— C .
procedures ‘quer¥’ an infinite loop
— Compound procedures are defined by the user ;7 Query 1nput:
* We didn’t delay arguments to primitive (assert! (colleen likes cookies))
procedures Tell the system facts |
* We made sure we had the actual value to Assertion added to data base.

print it

Ifs needed REAL values for predicates @ ;:: Ouery input: @

8/3/2011

[N

Some facts | told the query system

(assert! (colleen likes cookies))
(assert! (hamilton likes cookies))
(assert! (stephanie likes oreos))
(assert! (kevin likes pizza))
(assert! (eric likes pizza))
(assert! (phill likes everything))

&

rrs

(?who likes pizza)=]

rror

(eric likes pizza)

Query results:
(kevin likes pizza;\\\\\‘

We can ask the query system
questions

Query input:

What facts match
this pattern?

?who isavariable,
it can be anything

We can get multiple

The query system “filters” out
facts that don’t match
;7 Query input:

(?who likes pizza)

(COOoD
Don'tkeep| .Y ' ! o

this one! (D)

(colleen likes cookies)

| | (?who

| likes || pizza)

’

(

(

[| (

The query system “filters” out
facts that don’t match
;; Query input:

?who likes pizza)

1
(LI DL@_} Keep this
v !
A | 3 1“1 one!
()
kevin likes || pizza) “"
?who | likes || pizza) | =%

We can ask the query system
questions
;77 Query input:

(?who likes pizza)

(LU ob)

The variable name | ~ 7 7, 1+ |
doesn’t matter PP
()

;7 Query results:
(kevin likes pizza)

(eric likes pizza)

&

2

Filtering allows us to get multiple

things back!
L 1.1 121 les \
teotdeen Tkes Jedess
(hamailton 1] o lea Y
hemid-ton—-ikes Jed-es)
. o1
(eric likes pizza)
(o311 121 wiztlaa o)
fehitt Iidees ryhdn e
(kevin likes pizza)
(OO
I |
> > ><
([1 [D

8/3/2011

=

Write a query that matches ALL

assertions that we’ve added!
(colleen likes cookies)
(hamilton 1likes cookies)

(stephanie likes oreos)

(eric likes pizza)
(phill likes everything)
(kevin likes pizza)

D. Need 3 variables
E. Stuck

A. Not possible
B. Need 1 variable
C. Need 2 variables

&

What can a query return

colleen likes cookies)

hamilton likes cookies)

stephanie likes oreos)

(
(
(
(
(
(

eric likes pizza)
phill likes everything)
kevin likes pizza)

How many results?
;i Query input;/ A.0B.1C.2D.3-6E.??

(?who likes elephants)

G

Do these match?

(assert! (colleen likes ice cream))
(assert! (colleen likes cookies))
;77 Query input: A. Only.
(colleen likes ?what) COOk@S
B. Onlyice
cream
;7 Quer results: — |
Y C. Both
D. Neither
E. ??

We need to think about pairs
;7; Query input:

(colleen likes ?what)

(colleen . (likes . (?what .)))
colleen likes ?what

(colleen likes cookies)
. (likes . (cookies. ())))

colleen likes cookies

(colleen

G

We need to think about pairs
;7 Query input: Do these match?
(colleen likes °what)/A Yes B.No C.??

(colleen . llkes . (?what .
colleen likes ?what
(colleen likes ice cream)

(colleen . (likes .(ice . (cream .
.I

[ELELELT

colleen I|kes cream

&

We need to think about pairs

;77 Query input:

(colleen likes . 2what) — Equivalent

(colleen . (likes . ?what))

HEZHE S

colleen likes
— matches!

(colleen likes ice cream)

HESHENRESY

colleen likes cream

(7

8/3/2011

Facts with variables: rules

We can add things WITH variables to the “facts”
(assert! (rule (car 2a (?a . 2b))))

;7;; Query input:
(car ?x (5 6 7))
\l(car 2x (5 . (6 . (7

;77 Query results:

(car 5 (5 6 7)) Z

.0)))) |

Facts with variables: rules

We can add things WITH variables to the “facts”

(assert! (rule (car 2a (?a . ?b))))
(car ?a [[(?a |. |?Db))

(car ?2xX (5 . (6. (7.0))))

7a = ?x

e = = We figured stuff out
e about the world
?b = (6.(7.0)))

(car 5 (5 6 7)) @

We can return things with variables

777 Query input: Matches with this
but we still don’t

know all the values

(car 1 ?vy)

;77 Query results:

(car 1 (1 . ?b))

(car 1 (1 ?b-27))

This is what is really printed:

Query system adds #'s to avoid
naming conflicts

Rules can have Bodies| Body
Treat as a

new query
(?x likes cookies)))

(assert! (rule (awesome ?Xx)

77; Query input: -1719 O
(awesome ?Yy) : rq» O
?x = ?y ;figured out

(7% likes|/cookies)

(stephanie||likes|oreos)

?x = stephanie ; figured out _ ."

Rules can have Bodies| Body
Treat as a

new query
(?x likes cookies)))

(assert! (rule (awesome ?Xx)

777 Query input: L= O
(awesome ?y) -’*»“r?»*lrw
?x = ?y ;figured out

(7= likes| cookies)

(hamilton |/ likes||cookies)

?x = hamilton; figured out _ ."

Write 2nd

;77 Query input:
(2nd ?x (4 5 6))
;77 Query results:
(2nd 5 (4 5 6))
;77 Query input:
(2nd 3 ?x)

;77 Query results:
(2nd 3 (?a-29 3

?2c-29)) Z

