
8/3/2011

1

CS61A Lecture 26

2011-08-03

Colleen Lewis

1

In the REGULAR version
Where do arguments get evaluated?

A. In mc-eval

B. In mc-apply

C. In both

D. In neither

E. ???

2

Changes to mc-eval for the lazy evaluator

(define (mc-eval exp env)

 (cond ...

 ((application? exp)

 (mc-apply (actual-value (operator exp) env)

 (list-of-values (operands exp) env)))

3

(define (mc-eval exp env)

 (cond ...

 ((application? exp)

 (mc-apply (mc-eval (operator exp) env)

 (list-of-values (operands exp) env)))

The lazy mc-apply

mc-apply

Compound
(User defined)

Procedure

Primitive
procedure

4

Don’t evaluate
the arguments

DO evaluate the
arguments

THE RULES

The lazy mc-eval might return a Thunk ADT, we should
Force these:

• Before you print something returned by mc-eval

• Before you pass arguments to a primitive procedure

– if is LIKE a primitive procedure the predicate shouldn’t

be a Thunk ADT.

We should CREATE Thunk ADTs (delay stuff)

• Before you pass arguments to a compound
procedure

5

The RANGE of mc-eval includes
Thunk ADTs

STk> (load "lazy.scm")

okay

STk> (define g-env (setup-environment))

g-env

STk> (mc-eval '((lambda (x) x) (+ 2 3)) g-env)

(thunk (+ 2 3))

6

env

User-defined
procedure:

Don’t evaluate
the arguments

mc-eval may
return a Thunk ADT

8/3/2011

2

STk> (mc-eval '((lambda (x) x) (+ 2 3)) g-env)

Tracing a call that returns
a Thunk ADT from mc-eval

(define (mc-eval exp env)

 (cond ...

 ((application? exp)

 (mc-apply

 (actual-value (operator exp) env)

 (list-of-values (operands exp) env)))

7

Tracing a call that returns
a Thunk ADT from mc-eval

(define (mc-apply procedure arguments env)

 (cond …

 ((compound-procedure? procedure)

 (eval-sequence

 (procedure-body procedure)

 (extend-environment

 (procedure-parameters procedure)

 (list-of-delayed-args arguments env)

 (procedure-environment procedure))))

8

STk> (mc-eval '((lambda (x) x) (+ 2 3)) g-env)

'(procedure (x) (x)) exp

variables

values

old env

Does this call
force-it?
A. Y B. N C.?

Replace a call to mc-eval
to avoid printing a Thunk ADT

(define (driver-loop)

 (prompt-for-input input-prompt)

 (let ((input (read)))

 (let ((output

 (actual-value input the-global-environment)))

 (announce-output output-prompt)

 (user-print output)))

 (driver-loop))

9

mc-eval might

return a delayed
argument from a

compound
procedure

This was:
mc-eval

if’s need actual values!

(define (eval-if exp env)

 (if (true?

 (actual-value

 (if-predicate exp)

 env))

 (mc-eval (if-consequent exp) env)

 (mc-eval (if-alternative exp) env)))

1
0

mc-eval

sometimes

returns

Thunk

ADTs

(define (mc-eval exp env)

 (cond

 ((self-evaluating? exp)...

 ((variable? exp)...

 ((quoted? exp) ...

 ((assignment? exp) ...

 ((definition? exp) ...

 ((if? exp) ...

 ((lambda? exp) ...

 ((begin? exp) ...

 ((cond? exp) ...

 ((application? exp) ...

 (else (error “what?"))))

11

Should we add
a Thunk?
check to mc-
eval?
A. No – not

necessary
B. No handled

by another
case

B. Yes
D. ??

actual-value
(define (actual-value exp env)

 (force-it (mc-eval exp env)))

(define (force-it obj)

 (if (thunk? obj)

 (actual-value (thunk-exp obj)

 (thunk-env obj))

 obj))

(define (force-it-FAKE obj)

 (if (thunk? obj)

 (mc-eval (thunk-exp obj)

 (thunk-env obj))

 obj))

12

thunk

car cdr car cdr car cdr

exp env

8/3/2011

3

Example of why we call actual-value
STk> (load "lazy.scm")

okay

STk> (define g-env (setup-environment))

g-env

STk> (mc-eval

 '((lambda (x) x)

 ((lambda (y) y)

 (+ 2 3)))

 g-env)

a.(thunk ((lambda (y) y) (+ 2 3)))

b.(thunk ((lambda (x) x) (+ 2 3)))

c.(thunk ((λ (x) x)((λ (y) y)(+ 2 3))))

d. 5 e. ??

1
3

env

env

env

If we’re going to delay-it we need to
keep track of the environment!

(define (delay-it exp env)

 (list 'thunk exp env))

1
4

thunk

car cdr car cdr car cdr

env
(+ 2 x)

When I get forced:
evaluate the exp in

this environment

Why you need to evaluate Thunk ADTs
in their original environment

STk> (define (crazy arg)

 (let ((x 3))

 (+ x arg arg)))

STk> (define x 4)

STk> (crazy (+ x 1))

(crazy (+ x 1))

(* x arg arg)

(* 3 (+ x 1)(+ x 1))

(* 3 (+ 3 1)(+ 3 1))

(crazy (+ x 1))

(crazy 5)

(* x arg arg)

(* 3 5 5)

WRONG way:
without old

environment

Current frame: Global E1 E2

Global

x:5

E1

arg:

1
6

E2

x:3

thunk

car cdr car cdr car cdr

(+ x 1)

Params: arg

Body: (let..
Params: x

Body: (+ x... Does the
third

element
point to:

A. Global
B. E1
C. E2
D. None
E. ??

Summary & Additional Notes

• Thunk ADTs could also be memoized

• We delayed arguments to compound
procedures

– Compound procedures are defined by the user

• We didn’t delay arguments to primitive
procedures

• We made sure we had the actual value to
print it

• Ifs needed REAL values for predicates

17

Run (query) and tell it some facts

STk> (load "query.scm")

okay

STk> (query)

;;; Query input:

(assert! (colleen likes cookies))

Assertion added to data base.

;;; Query input:

18

Like (mce): it starts

an infinite loop

Tell the system facts

8/3/2011

4

Some facts I told the query system

(assert! (colleen likes cookies))

(assert! (hamilton likes cookies))

(assert! (stephanie likes oreos))

(assert! (kevin likes pizza))

(assert! (eric likes pizza))

(assert! (phill likes everything))

1
9

We can ask the query system
questions

;;; Query input:

(?who likes pizza)

;;; Query results:

(kevin likes pizza)

(eric likes pizza)

2
0

We can get multiple
answers!!!!!!

What facts match
this pattern?

?who is a variable,

it can be anything

The query system “filters” out
facts that don’t match

;;; Query input:

(?who likes pizza)

(colleen likes cookies)

(?who likes pizza)

2
1

Don’t keep
this one!

The query system “filters” out
facts that don’t match

;;; Query input:

(?who likes pizza)

(kevin likes pizza)

(?who likes pizza)

2
2

Keep this
one!

We can ask the query system
questions

;;; Query input:

(?who likes pizza)

;;; Query results:

(kevin likes pizza)

(eric likes pizza)

23

The variable name
doesn’t matter

Filtering allows us to get multiple
things back!

(colleen likes cookies)

(hamilton likes cookies)

(stephanie likes oreos)

(eric likes pizza)

(phill likes everything)

(kevin likes pizza)

24

8/3/2011

5

Write a query that matches ALL
assertions that we’ve added!

(colleen likes cookies)

(hamilton likes cookies)

(stephanie likes oreos)

(eric likes pizza)

(phill likes everything)

(kevin likes pizza)

A. Not possible D. Need 3 variables

B. Need 1 variable E. Stuck

C. Need 2 variables

2
5

What can a query return

(colleen likes cookies)

(hamilton likes cookies)

(stephanie likes oreos)

(eric likes pizza)

(phill likes everything)

(kevin likes pizza)

;;; Query input:

(?who likes elephants)

2
6

How many results?
A. 0 B. 1 C. 2 D. 3-6 E. ??

Do these match?

(assert! (colleen likes ice cream))

(assert! (colleen likes cookies))

;;; Query input:

(colleen likes ?what)

;;; Query results:

2
7

A. Only
cookies

B. Only ice
cream

C. Both
D. Neither
E. ??

We need to think about pairs
;;; Query input:

(colleen likes ?what)

(colleen .(likes .(?what .())))

(colleen likes cookies)

(colleen .(likes .(cookies.())))

2
8

colleen

car cdr car cdr car cdr

likes ?what

colleen

car cdr car cdr car cdr

likes cookies

We need to think about pairs
;;; Query input:

(colleen likes ?what)

(colleen .(likes .(?what .())))

(colleen likes ice cream)

(colleen .(likes .(ice .(cream . ()))))

29

colleen

car cdr car cdr car cdr

likes ?what

likes

car cdr car cdr car cdr

ice cream colleen

car cdr

Do these match?
A. Yes B. No C. ??

We need to think about pairs
;;; Query input:

(colleen likes . ?what)

(colleen .(likes . ?what))

(colleen likes ice cream)

30

colleen

car cdr car cdr

likes

?what

likes

car cdr car cdr car cdr

ice cream colleen

car cdr

matches!

Equivalent

8/3/2011

6

Facts with variables: rules

We can add things WITH variables to the “facts”

(assert! (rule (car ?a (?a . ?b))))

;;; Query input:

(car ?x (5 6 7))

;;; Query results:

(car 5 (5 6 7))

3
1

(car ?x (5 .(6 .(7 .()))))

Facts with variables: rules

We can add things WITH variables to the “facts”

(assert! (rule (car ?a (?a . ?b))))

(car ?a (?a . ?b))

(car ?x (5 . (6.(7.()))))

?a = ?x

?a = 5

?b = (6.(7.()))

(car 5 (5 6 7))

3
2

We figured stuff out
about the world

We can return things with variables

;;; Query input:

(car 1 ?y)

;;; Query results:

(car 1 (1 . ?b))

(car 1 (1 . ?b-27))

3
3

Matches with this
but we still don’t

know all the values

This is what is really printed:
Query system adds #’s to avoid

naming conflicts

Rules can have Bodies

(assert! (rule (awesome ?x)

 (?x likes cookies)))

;;; Query input:

(awesome ?y)

?x = ?y ;figured out

(?x likes cookies)

(stephanie likes oreos)

?x = stephanie ; figured out

3
4

Body
Treat as a
new query

Rules can have Bodies

(assert! (rule (awesome ?x)

 (?x likes cookies)))

;;; Query input:

(awesome ?y)

?x = ?y ;figured out

(?x likes cookies)

(hamilton likes cookies)

?x = hamilton; figured out

35

Body
Treat as a
new query

Write 2nd

;;; Query input:

(2nd ?x (4 5 6))

;;; Query results:

(2nd 5 (4 5 6))

;;; Query input:

(2nd 3 ?x)

;;; Query results:

(2nd 3 (?a-29 3 . ?c-29))

36

