
Below is the Pig Latin code provided in lab.
 (define (pigl wd)

 (if (pl-done? wd)
 (word wd ‘ay)

 (pigl (word (bf wd) (first wd)))))

 (define (pl-done? wd)

 (vowel? (first wd)))

 (define (vowel? letter)

 (member? letter ‘(a e i o u)))

Q1: We LOVE helper procedures and think that you should too! But to test your understanding of how these helper

procedures are working, please re-write the bolded code in pigl without calling the helper procedures pl-done? and
vowel? Without changing the behavior of the function pigl, (pl-done? wd)can be replaced with:

__

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 7)

Q3:Write the procedure multiply that multiplies all of the numbers in a sentence as shown by the example calls
below.
STk> (multiply ‘(1 2))

2

STk> (multiply ‘(10 3 2))

60

STk> (multiply ‘())

1

Q4: How many times is * called in the following code:

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: __________

Using normal order: __________

Below is the Pig Latin code provided in lab.
 (define (pigl wd)

 (if (pl-done? wd)
 (word wd ‘ay)

 (pigl (word (bf wd) (first wd)))))

 (define (pl-done? wd)

 (vowel? (first wd)))

 (define (vowel? letter)

 (member? letter ‘(a e i o u)))

Q1: We LOVE helper procedures and think that you should too! But to test your understanding of how these helper

procedures are working, please re-write the bolded code in pigl without calling the helper procedures pl-done? and
vowel? Without changing the behavior of the function pigl, (pl-done? wd)can be replaced with:

__

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 3)

Q3:Write the procedure multiply that multiplies all of the numbers in a sentence as shown by the example calls
below.
STk> (multiply ‘(1 2))

2

STk> (multiply ‘(10 3 2))

60

STk> (multiply ‘())

1

Q4: How many times is * called in the following code:

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: __________

Using normal order: __________

Below is the Pig Latin code provided in lab.
 (define (pigl wd)

 (if (pl-done? wd)
 (word wd ‘ay)

 (pigl (word (bf wd) (first wd)))))

 (define (pl-done? wd)

 (vowel? (first wd)))

 (define (vowel? letter)

 (member? letter ‘(a e i o u)))

Q1: We LOVE helper procedures and think that you should too! But to test your understanding of how these helper

procedures are working, please re-write the bolded code in pigl without calling the helper procedures pl-done? and
vowel? Without changing the behavior of the function pigl, (pl-done? wd)can be replaced with:

__

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 6)

Q3:Write the procedure multiply that multiplies all of the numbers in a sentence as shown by the example calls
below.
STk> (multiply ‘(1 2))

2

STk> (multiply ‘(10 3 2))

60

STk> (multiply ‘())

1

Q4: How many times is * called in the following code:

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: __________

Using normal order: __________

Below is the Pig Latin code provided in lab.
 (define (pigl wd)

 (if (pl-done? wd)
 (word wd ‘ay)

 (pigl (word (bf wd) (first wd)))))

 (define (pl-done? wd)

 (vowel? (first wd)))

 (define (vowel? letter)

 (member? letter ‘(a e i o u)))

Q1: We LOVE helper procedures and think that you should too! But to test your understanding of how these helper

procedures are working, please re-write the bolded code in pigl without calling the helper procedures pl-done? and
vowel? Without changing the behavior of the function pigl, (pl-done? wd)can be replaced with:

__

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 5)

Q3:Write the procedure multiply that multiplies all of the numbers in a sentence as shown by the example calls
below.
STk> (multiply ‘(1 2))

2

STk> (multiply ‘(10 3 2))

60

STk> (multiply ‘())

1

Q4: How many times is * called in the following code:

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: __________

Using normal order: __________

