
Question 1 and Question 3 - SAME FOR ALL VERSIONS
Below is the Pig Latin code provided in lab.
 (define (pigl wd)

 (if (pl-done? wd)
 (word wd ‘ay)

 (pigl (word (bf wd) (first wd)))))

 (define (pl-done? wd)

 (vowel? (first wd)))

 (define (vowel? letter)

 (member? letter ‘(a e i o u)))

Q1: Is the same for all versions!
Q1: We LOVE helper procedures and think that you should too! But to test your understanding of how these helper

procedures are working, please re-write the bolded code in pigl without calling the helper procedures pl-done? and
vowel? Without changing the behavior of the function pigl, (pl-done? wd)can be replaced with:

(member? (first wd) ‘(a e i o u))
__

Grading (out of 1 point):

- Invalid Scheme (-1 point)
- Using vowel? (-1 point)
- Switching arguments of member? (-0.5 point)
- Forgetting to call first (-0.5 point)

Q3: Is the same for all versions!

Q3:Write the procedure multiply that multiplies all of the numbers in a sentence as shown by the example calls
below.
STk> (multiply ‘(1 2))

2

STk> (multiply ‘(10 3 2))

60

STk> (multiply ‘())

1

(define (multiply sent)

 (if (empty? sent)

 1

 (* (first sent) (multiply (bf sent)))))

Grading (out of 2 points):
- return „() as the base-case (we want to work with numbers! And return a number!) (-0.5 points)
 This was REALLY common!
- using sentence as a combiner (we want to work with numbers! And return a number!) (-0.5 points)
 This was REALLY common!
- small mistake (-0.5 points)
- Proper start of definition “(define (multiply sent)” and proper condition (no more than -1.5 off)
- Leaving out the base case/recursive call (-1 point each)
- Using list operations instead of sentence operations (-0.5 point)
- Syntax of cond/if is incorrect (-0.5 point)
- Three really small errors (-1 point)

Version 1

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 7)

28 (1 point)

Q4: How many times is * called in the following code: (1 point)

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: _____4_____

Using normal order: ____5______

Version 2

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 3)

12 (1 point)

Q4: How many times is * called in the following code: (1 point)

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: ___4_______

Using normal order: ____6______

Version 3

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 6)

24 (1 point)

Q4: How many times is * called in the following code: (1 point)

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: _____4_____

Using normal order: _____5_____

Version 4

Q2: Fill in the blank to show what scheme would print.
STk>(define (a b c)

 (if (= b 1)

 c

 (+ c (a (- b 1) c))))

a

STk> (a 4 5)

20 (1 point)

Q4: How many times is * called in the following code: (1 point)

STk> (define (square x) (* x x))

STk> (define (weird x y) (* y y y))

STk> (weird (square (* 1 1)) (* 3 3))

Using applicative order: ____4______

Using normal order: ______4____

