
ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

1 Trees (with a capital T)
At Depth University, a student must complete at least one advanced class to graduate. However, ev-
ery advanced class has a prerequisite, which may itself have a prerequisite, and so on. Write a proce-
dure fast-grad that, given a prerequisite tree, with constructor make-tree and selectors datum and
children, returns the shortest possible list of courses needed to graduate. If there is a tie, fast-grad
may return any of the shortest lists. You may assume that all leaf nodes are advanced classes, and vice
versa.

For example, fast-grad called on the following tree can return (cs61a cs70 cs170) or (cs61a
cs61b cs184). Either one is correct.

cs61a
/ \

cs61b cs70
/ \ \

cs61c cs184 cs170
/ \

cs164 cs150

SOLUTION:

(define (fast-grad tree)
(cons (datum tree)

(forest-grad (children tree))))

(define (forest-grad forest)
(min-length (map fast-grad forest)))

(define (min-length lol)
(cond ((null? lol) ’())

((null? (cdr lol)) (car lol))
(else

(let ((rest (min-length (cdr lol))))
(if (< (length (car lol)) (length rest))

(car lol)
rest)))))

1



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

2 Environment Diagram
Draw the full environment diagram that is generated from typing the following expressions. What does
each line return?

STk> (define (bo-peep)
(let ((sheep 1000))
(define (herd msg)

(cond ((eq? msg ’one) (set! sheep (/ sheep 2)) sheep)
((eq? msg ’two)

(let ((m (herd ’one)))
(set! sheep (* m 4))
sheep))))

herd))

STk> (define flock (bo-peep))

STk> (flock ’two)

SOLUTION: 2000

Please use envdraw to check your environment diagram.

2



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

3 Concurrency
Assume the following has been typed in at the prompt:

STk> (define x 5)
STk> (define y 8)

STk> (define s (make-serializer))
STk> (define t (make-serializer))

a) (parallel-execute (s (lambda () (set! x (+ x 1))))
(t (lambda () (set! x (+ x 2)))))

Is deadlock possible?

What are the possible results?

SOLUTION:
Is deadlock possible? NO
What are the possible results? x = 6, 7, 8

b) (parallel-execute (s (t (lambda () (set! y (+ x 1)))))
(t (s (lambda () (set! x (* y 2))))))

Is deadlock possible?

What are the possible results?

SOLUTION:
Is deadlock possible? YES
What are the possible results? x = 12, y = 6 and x = 16, y = 17

3



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

4 Streams
What are the first seven elements of the following stream?

(define mystery (cons-stream 1
(cons-stream 2

(stream-map (lambda (x y) (+ x (* 2 y)))
mystery
(stream-cdr mystery)))))

mystery:

SOLUTION:

mystery: 1 2 5 12 29 70 169

4



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

5 Metacircular Evaluator (Part 1)
Recall that mceval.scm tests true or false using the true? and false? procedure:

(define (true? x) (not (eq? x false)))
(define (false? x) (eq? x false))

Suppose we type the following definition into MCE:

mceval> (define true false)

What would be returned by the following expression?

mceval> (if (= 2 2) 3 4)

SOLUTION: 3

6 Metacircular Evaluator (Part 2)
Suppose we type the following into MCE:

mceval> (define ’x (* x x))

This expression evaluates without error! Remember that expressions such as ’x are automatically ex-
panded to be the list (quote x) prior to evaluation. Knowing this, what would be returned by the fol-
lowing expressions?

a) mceval> quote

SOLUTION: (compound-procedure (x) ((* x x)) <procedure-env>)

b) mceval> (quote 10)

SOLUTION: 10

5



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

7 Analyzing Evaluator
Which of the following interactions will execute faster, slower, or the same in the analyzing evaluator than
in the original metacircular evaluator?

Circle FASTER, SLOWER, or SAME for each.

a) STk> (define (gauss-recur n) ;; sum of #s from 1 to n
(if (= n 1)

1
(+ n (gauss-recur (- n 1)))))

STk> (gauss-recur 1000)

Analyzing will be...

FASTER SLOWER SAME

SOLUTION: FASTER

b) STk> (define (gauss n) ;; sum of #s from 1 to n
(/ (* (+ n 1) n) 2))

STk> (gauss 1000)

Analyzing will be...

FASTER SLOWER SAME

SOLUTION: SAME

6



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

8 Lazy Evaluator
Consider the following interactions in the lazy evaluator:

lazy> (define w 100)
lazy> (define (foo x y)

(x y))
lazy> (define q

(foo (lambda (z) (set! w 50) z)
(begin (set! w 10) 3)))

What are the values of the following statements when typed at the prompt immediately afterwards?

1. w:

2. q:

3. w:

SOLUTION:

1. w: 50

2. q: 3

3. w: 10

7



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

9 Logic Programming
Write rules for the query (logic) evaluator to define the subseq relation. subseq is a relation between two
lists. The query evaluator should return a solution if the elements in the first list are present in the second
list in the same order. For example:

query> (subseq (a b c) (a z b y c)) ;; returns a solution
(subseq (a b c) (a z b y c))

query> (subseq (a b c) (a z c b)) ;; wrong order, so no solution

SOLUTION:

(assert! (rule (same ?x ?x)))

(assert! (rule (subseq () ?ls)))

(assert! (rule (subseq (?car1 . ?cdr1) (?car1 . ?cdr2))
(subseq ?cdr1 ?cdr2)))

(assert! (rule (subseq (?car1 . ?cdr1) (?car2 . ?cdr2))
(and (subseq (?car1 . ?cdr1) ?cdr2)

(not (same ?car1 ?car2)))))

8



ERIC AND STEPHANIE CS61A FINAL REVIEW SESSION AUGUST 8, 2011

10 Vectors
Write a procedure vector-remove that, given a vector and an element, returns a new vector with the
occurrences of that element removed. The size of the new vector should be exactly the number of elements
minus the ones removed.

You may find the count procedure helpful, which, given a vector and an element, returns the number of
occurrences of that element in that vector. Do not use vector->list or list->vector in this problem.
Use no data aggregates other than vectors.

STk> (count #(1 2 3 1) 1)
2
STk> (vector-remove #(1 2 3 1) 1)
#(2 3)
STk> (vector-remove #(1 2 3) 4)
#(1 2 3)

SOLUTION:

(define (vector-remove vect el)
(define (helper old new old-i new-i)

(if (= old-i (vector-length old))
new
(if (eq? (vector-ref old old-i) el)

(helper old new (+ old-i 1) new-i)
(begin (vector-set! new new-i (vector-ref old old-i))

(helper old new (+ old-i 1) (+ new-i 1))))))
(helper vect (make-vector (- (vector-length vect) (count vect el))) 0 0))

9


