
CS61B Lecture #1

• Labs and discussions sections start(ed) this week. Get an account
(if needed) and register electronically this week

• Go to any sections, labs where you fit.

• Class web page and newsgroup set up: read them regularly!

• Concurrent enrollment students: bring me your forms.

• Readers will be coming from one of the local copy stores (we’ll an-
nounce).

• For Friday, read Chapters 1–4 of Head First Java.

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 1

Course Organization

• You read; we illustrate.

• Labs are important: practical dirty details go there.

• Homework is important, but really not graded: use it as you see fit
and turn it in!

• Individual projects are really important! Expect to learn a lot.

• Use of tools is part of the course. Programming takes place in a
programming environment:

– Handles program editing, debugging, controlling compilation, archiv-
ing versions.

– We’ll see Eclipse in lab.

– Or there are coordinated suites of tools (e.g., Emacs + gjdb +
make + cvs).

• Tests are challenging: better to stay on top than to cram.

• Tests, 90%; Projects, 90%; HW, 20%

• Stressed? Tell us!

• Now’s your opportunity to decide.

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 2

Programming, not Java

• Here, we learn programming, not Java (or Unix, or NT, or. . .)

• Programming principles span many languages

– Look for connections.

– Syntax (x+y vs. (+ x y)) is superficial.

– E.g., Java and Scheme have a lot in common.

• Whether you use GUIs, text interfaces, embedded systems, impor-
tant ideas are the same.

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 3

Really simple example

public class Greet {

/** Print a greeting message on standard output. */

public static void main (String[] args) {

System.out.print ("Hello, ");

if (args.length > 0)

System.out.println (args[0]);

else

System.out.println ();

}

}

% javac -g Greet.java # Creates Greet.class

% java Greet world # Interpreter calls Greet.main

Hello, world # Output

% java Greet me warmly # Another run

Hello, me # args[0] = "me"

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 4

Lessons from Simple Example

• All definitions are inside some class.

• Syntax A.B means “the B that is defined (or contained) inside A,”

– E.g., System.out.println, Greet.main

• Ordinary function is static method, like Greet.main.

• Methods declare what kinds (types) of arguments they take, and
what kind of value they return (void means “no value”).

• Method calls use familiar prefix syntax.

• Command-line arguments become an array of strings.

• Array is indexed sequence: args[0], args[1], ..., args[args.length-1]

• Conditional statement: if (condition) ...else

• Access control: public and others control what parts of the pro-
gram may use a definition.

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 5

Prime Numbers

Problem: want java PrintPrimes0 L U to print prime numbers be-
tween L and U .

You type: java primes 101

It types: 2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101

Definition: A prime number is an integer greater than 1 that has no
divisors smaller than itself other than 1.

Useful Facts:

• If k ≤
√

N , then N/k ≥
√

N , for N, k > 0.

• k divides N iff N/k divides N .

So: Try all potential divisors up to and including the square root.

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 6

Plan

class primes {

/** Print all primes up to ARGS[0] (interpreted as an

* integer), 10 to a line. */

public static void main (String[] args) {

printPrimes (Integer.parseInt (args[0]));

}

/** Print all primes up to and including LIMIT, 10 to

* a line. */

private static void printPrimes (int limit) {

/*{ For every integer, x, between 2 and LIMIT, print it if

isPrime (x), 10 to a line. }*/

}

/** True iff X is prime */

private static boolean isPrime (int x) {

return /*(X is prime)*/;

}

}

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 7

Testing for Primes

private static boolean isPrime (int x) {

if (x <= 1)

return false;

else

return ! isDivisible (x, 2); // "!" means "not"

}

/** True iff X is divisible by any positive number >=K and < X,

* given K > 1. */

private static boolean isDivisible (int x, int k) {

if (k >= x) // a "guard"

return false;

else if (x % k == 0) // "%" means "remainder"

return true;

else // if (k < x && x % k != 0)

return isDivisible (x, k+1);

}

Last modified: Wed Jan 18 12:39:32 2006 CS61B: Lecture #1 8

	CS61B Lecture #1
	Course Organization
	Programming, not Java
	Really simple example
	Lessons from Simple Example
	Prime Numbers
	Plan
	Testing for Primes

