CS61B Lecture #18

Today:
e Asymptotic complexity (from last time)
e Overview of standard Java Collections classes.

- Iterators, ListIterators
- Containers and maps in the abstract
- Views

Readings for Today: Data Structures, Chapter 2.

Some Intuition on Meaning of Growth

e How big a problem can you solve in a given time?

e In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N.

e Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

e N = problem size

Time (usec) for Max N Possible in

problem size N | 1second 1 hour 1 month 1 century

Readings for next Topic: Data Structures, Chapter 3. . 1()300000 1()1000000000 1()8~1011 1094014
106 3.6-10° 2.7-1012 3.2-10%

63000 1.3-10% 7.4-10% 6.9-10"
1000 60000 1.6- 109 5.6 - 107

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 1

100 1500 14000 150000
20 32 41 ol

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 2

New Topic: Data Types in the Abstract

e Most of the time, should not worry about implementation of data
structures, search, etc.

e What they do for us—their specification—is important.

e Java has several standard types (in java.util) to represent collec-
tions of objects

- Six interfaces:
x Collection: General collections of items.
* List: Indexed sequences with duplication
* Set, SortedSet: Collections without duplication
* Map, SortedMap: Dictionaries (key — value)

- Concrete classes that provide actual instances: LinkedList, ArrayList,

HashSet, TreeSet.

- To make change easier, purists would use the concrete types only
for new, interfaces for parameter types, local variables.

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 3

Collection Structures in java.util

LinkedList ArrayList TreeSet

class

HashMap WeakHashMap TreeMap

. extends
implements

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 4

The Collection Interface

e Collection interface. Main functions promised:
- Membership tests: contains (€), containsAll (C)
- Other queries: size, isEmpty
- Retrieval: iterator, toArray
- Optional modifiers: add, addAll, clear, remove, removeAll (set
difference), retainAll (intersect)
e Design point (a side trip): Optional operations may throw

UnsupportedOperationException

e An alternative design would have separate interfaces:

interface Collection { contains, containsAll, size, iterator, ...
interface Expandable { add, addAll }
interface Shrinkable { remove, removeAll, difference, ... }
interface ModifiableCollection

extends Collection, Expandable, Shrinkable { }

You'd soon have lots of interfaces. Perhaps that's why they didn't
do it that way.)

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 5

The List Interface

e Extends Collection
e Intended to represent indexed sequences (generalized arrays)
e Adds new methods to those of Collection:

- Membership tests: index0f, lastIndexOf.
- Retrieval: get (i), listIterator(), sublist(B, F).

- Modifiers: add and addA11 with additional index to say where to
add. Likewise for removal operations. set operation to go with
get.

. Type ListIterator<Item> extends Iterator<Item>:

- Adds previous and hasPrevious.

- add, remove, and set allow one to iterate through a list, inserting,
removing, or changing as you go.

- Important Question: What advantage is there fo saying List L
rather than LinkedList L or ArrayList L?

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 6

Views

New Concept: A view is an alternative presentation of (interface to)
an existing object.

e For example, the sublist method is supposed to yield a "view of"

L:

List<String> L = new ArrayList<String>();
L.add ("at"); L.add("ax"); ...
List<String> SL = L.sublist (1,4);

SL:

e Example: after L.set(2, "bag"), value of SL.get(1) is "bag", and
after SL.set(1,"bad"), value of L.get(2) is "bad".

e Example: after SL.clear (), L will contain only "at" and "cat".
e Small challenge: "How do they do that?!"

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 7

Maps

e A Map is a kind of "modifiable function:"

package java.util;
public interface Map<Key,Value> {
Value get (Object key); // Value at KEY.
Object put (Key key, Value value); // Set get(KEY) -> VALUE

Map<String,String> f = new TreeMap<String,String> (O ;
f.put ("Paul", "George"); f.put ("George", "Martin");
f.put ("Dana", "John");

// Now f.get ("Paul").equals ("George")

// f.get ("Dana").equals ("John")

// f.get ("Tom") == null

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18

Map Views

public interface Map<Key,Value> { // Continuation
/* VIEWS */

/*x The set of all keys. */
Set<Key> keySet ();
/** The multiset of all values */
Collection<Value> values ();
/** The set of all (key, value) pairs */
Set<Map.Entry<Key,Value>> entrySet ();

}

Using example from previous slide:

for (Iterator<String> i = f.keySet ().iterator (); i.hasNext ();)
i.next () ===> Dana, George, Paul

// or, just:

for (String name : f.keySet ())
name ===> Dana, George, Paul

for (String parent : f.values ())

parent ===> John, Martin, George
for (Map.Entry<String,String> pair : f.entrySet ())

pair ===> (Dana,John), (George,Martin), (Paul,George)
f.keySet ().remove ("Dana"); // Now f.get("Dana") == null

Last modified: Fri Mar 3 16:13:29 2006 CS61B: Lecture #18 9

	CS61B Lecture #18
	Some Intuition on Meaning of Growth
	New Topic: Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	The List Interface
	Views
	Maps
	Map Views

