
CS61B Lecture #23

Today: Java support for generic programming

Readings for today: Head First Java chapter 16, Assorted Readings
on Java chapter 5.

Next topic: Data Structures into Java §6.2, §6.4, §6.5.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 1

The Old Days

• Java library types such as List didn’t used to be parameterized. All
Lists were lists of Objects.

• So you’d write things like this:

for (int i = 0; i < L.size (); i += 1) {

{ String s = (String) L.get (i); ... }

• That is, must explicitly cast result of L.get (i) to let the compiler
know what it is.

• Also, when calling L.add(x), was no check that you put only Strings
into it.

• So, newest release attempts to alleviate these perceived problems
by introducing parameterized types, like List<String>.

• Unfortunately, it is not as simple as one might think.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 2

Basic Parameterization

• From the definition of ArrayList in java.util:

public class ArrayList<Item> implements List<Item> {

public Item get (int i) { ... }

public boolean add (Item x) { ... }

...

}

• First occurrence of Item introduces a formal type parameter, whose
“value” (a reference type) in effect gets substituted for all the
other occurrences of Item when ArrayList is “called” (when a pro-
grammer writes, e.g., ArrayList<String> or ArrayList<int[]>).

• Not limited to one parameter:

Map<String,Table> database = new HashMap<String,Table>();

• Can also say that you don’t care what a type parameter is (wild-
cards):

/** Number of items in C that are .equal to X. */

static int frequency (Collection<?> c, Object x) {...}

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 3

Parameters on Methods

• Functions (methods) may also be parameterized by type. Example of
use from java.util.Collections:

/** A read-only list containing just ITEM. */

static <T> List<T> singleton (T item) { ... }

In this case, compiler figures out T without help when you call
singleton(x) by looking at the type of x.

• Another example (from java.util.Collections):

/** An unmodifiable empty list. */

static <T> List<T> emptyList () { ... }

Here, a call to emptyList() would not contain enough information,
so instead we write, e.g., Collections.<Particle>emptySet (), to
tell the compiler that T is Particle.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 4

Type Bounds

• Sometimes, your program needs to ensure that a particular type pa-
rameter is replaced only by a subtype (or supertype) of a particular
type (sort of like specifying the “type of a type.”).

• For example,

class NumericSet<T extends Number> extends HashSet<T> {

/** My minimal element */

T min () { ... }

...

}

Requires that all type parameters to NumbericSet must be subtypes
of Number (the “type bound”). (T can extend or implement the bound,
as appropriate.

• Another example:

/** Set all elements of L to X. */

static <T> void fill (List<? super T> L, T x) { ... }

means that L can be a List<Q> as long as T is a subtype of (extends
or implements) Q.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 5

Type Bounds (II)

And one more:

/** Search sorted list L for KEY, returning either its position (if

* present), or k-1, where k is where KEY should be inserted. */

static <T> int binarySearch(List<? extends Comparable<? super T>> L, T key)

Here, the items of L have to be comparable to T’s. Something that is
Comparable<? super T> is comparable to a T or anything T is a subtype
of.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 6

Dirty Secrets Behind the Scenes

• Java’s design for parameterized types was constrained by a desire
for backward compatibility.

• Actually, when you write

class Foo<T> {

T x; Foo<Integer> q = new Foo<Integer>();

T mogrify (T y) { ... } Integer r = q.mogrify (s);

}

Java gives really gives you

class Foo {

Object x; Foo q = new Foo();

Object mogrify (Object y) { ... } Integer r =

} (Integer) q.mogrify ((Integer) s);

That is, it supplies the casts automatically, and also throws in some
additional checks. If it can’t guarantee that all those casts will work,
gives you a warning about “unsafe” constructs.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 7

Limitations

Because of Java’s design choices, are some limitations to generic pro-
gramming:

• Since all kinds of Foo or List are really the same,

– L instanceof List<String>will be true when L is a List<Integer>.

– Inside, e.g., class Foo, you cannot write new T (), new T[], or x

instanceof T.

• Primitive types are not allowed as type parameters.

– Can’t have ArrayList<int>, just ArrayList<Integer>.

– Fortunately, automatic boxing and unboxing makes this substitu-
tion easy:

int sum (ArrayList<Integer> L) {

int N; N = 0;

for (int x : L) { N += x; }

return N;

}

– Unfortunately, boxing/unboxing have significant costs.

Last modified: Mon Mar 13 13:51:44 2006 CS61B: Lecture #23 8

	CS61B Lecture #23
	The Old Days
	Basic Parameterization
	Parameters on Methods
	Type Bounds
	Type Bounds (II)
	Dirty Secrets Behind the Scenes
	Limitations

