
CS61B Lecture #26

Today:

• Sorting algorithms: why?

• Insertion, Shell’s, Heap, Merge sorts

Readings for Today:
DS(IJ), Chapter 8;

Public Service Announcement: Business Revolution: A 360 degree
Overview on the Business of Technology. Speakers will present their
careers in Venture Capital, Corporate Management, and Entrepreneur-
ship. March 23, 2006, 7–9PM, 2060 VLSB. Complimentary Food. Hosted
by the Xi Pledge Class of AKΨ

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 1



Purposes of Sorting

• Sorting supports searching

• Binary search standard example

• Also supports other kinds of search:

– Are there two equal items in this set?

– Are there two items in this set that both have the same value for
property X?

– What are my nearest neighbors?

• Used in numerous unexpected algorithms, such as convex hull (small-
est convex polygon enclosing set of points).

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 2



Some Definitions

• A sort is a permutation (re-arrangement) of a sequence of elements
that brings them into order, according to some total order. A total
order, �, is:

– Total: x � y or y � x for all x, y.

– Reflexive: x � x;

– Antisymmetric: x � y and y � x iff x = y.

– Transitive: x � y and y � z implies x � z.

• However, our orderings may allow unequal items to be equivalent:

– E.g., can be two dictionary definitions for the same word: if en-
tries sorted only by word, then sorting could put either entry
first.

– A sort that does not change the relative order of equivalent en-
tries is called stable.

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 3



Classifications

• Internal sorts keep all data in primary memory

• External sorts process large amounts of data in batches, keeping
what won’t fit in secondary storage (in the old days, tapes).

• Comparison-based sorting assumes only thing we know about keys is
order

• Radix sorting uses more information about key structure.

• Insertion sorting works by repeatedly inserting items at their ap-
propriate positions in the sorted sequence being constructed.

• Selection sorting works by repeatedly selecting the next larger
(smaller) item in order and adding it one end of the sorted sequence
being constructed.

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 4



Sorting by Insertion

• Simple idea:

– starting with empty sequence of outputs.

– add each item from input, inserting into output sequence at right
point.

• Very simple, good for small sets of data.

• With vector or linked list, time for find + insert of one item is at
worst Θ(k), where k is # of outputs so far.

• So gives us O(N 2) algorithm. Can we say more?

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 5



Inversions

• Can run in Θ(N) comparisons if already sorted.

• Consider a typical implementation for arrays:

for (int i = 1; i < A.length; i += 1) {

int j;

Object x = A[i];

for (j = i-1; j >= 0; j -= 1) {

if (A[j].compareTo (x) <= 0) /* (1) */

break;

A[j+1] = A[j];

}

A[j+1] = x;

}

• #times (1) executes ≈ how far x must move.

• If all items within K of proper places, then takes O(KN) operations.

• Thus good for any amount of nearly sorted data.

• One measure of unsortedness: # of inversions: pairs that are out
of order (= 0 when sorted, N(N − 1)/2 when reversed).

• Each step of j decreases inversions by 1.

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 6



Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

• First sort subsequences of elements 2k − 1 apart:

– sort items #0, 2k − 1, 2(2k − 1), 3(2k − 1), . . ., then

– sort items #1, 1 + 2k − 1, 1 + 2(2k − 1), 1 + 3(2k − 1), . . ., then

– sort items #2, 2 + 2k − 1, 2 + 2(2k − 1), 2 + 3(2k − 1), . . ., then

– etc.

– sort items #2k − 2, 2(2k − 1) − 1, 3(2k − 1) − 1, . . .,

– Each time an item moves, can reduce #inversions by as much as
2k + 1.

• Now sort subsequences of elements 2k−1 − 1 apart:

– sort items #0, 2k−1 − 1, 2(2k−1 − 1), 3(2k−1 − 1), . . ., then

– sort items #1, 1 + 2k−1 − 1, 1 + 2(2k−1 − 1), 1 + 3(2k−1 − 1), . . .,

– ...

• End at plain insertion sort (20 = 1 apart), but with most inversions
gone.

• Sort is Θ(N 1.5) (take CS170 for why!).

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 7



Example of Shell’s Sort

#I #C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 120 1

0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 91 10

0 7 6 5 4 3 2 1 14 13 12 11 10 9 8 15 42 20

0 1 3 2 4 6 5 7 8 10 9 11 13 12 14 15 4 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 -

I: Inversions left.
C: Comparisons needed to sort subsequences.

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 8



Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

• Really bad idea on a simple list or vector.

• But we’ve already seen it in action: use heap.

• Gives O(N lg N) algorithm (N remove-first operations).

• Since we remove items from end of heap, we can use that area to
accumulate result:

19 0 -1 7 23 2 42original:

42 23 19 7 0 2 -1heapified:

23 7 19 -1 0 2 42

19 7 2 -1 0 23 42

7 0 2 -1 19 23 42

2 0 -1 7 19 23 42

0 -1 2 7 19 23 42

-1 0 2 7 19 23 42

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 9



Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

• Already seen analysis: Θ(N lg N).

• Good for external sorting:

– First break data into small enough chunks to fit in memory and
sort.

– Then repeatedly merge into bigger and bigger sequences.

– Can merge K sequences of arbitrary size on secondary storage
using Θ(K) storage.

• For internal sorting, can use binomial comb to orchestrate:

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 10



Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

0 elements processed

1 •0: (9)
01:
02:
03:

1 element processed

00:
1 •1: (9, 15)
02:
03:

2 elements processed

1 •0: (5)
1 •1: (9, 15)
02:
03:

3 elements processed

00:
01:
1 •2: (3, 5, 9, 15)
03:

4 elements processed

00:
1 •1: (0, 6)
1 •2: (3, 5, 9, 15)
03:

6 elements processed

1 •0: (8)
1 •1: (2, 20)
02:
1 •3: (-1, 0, 3, 5, 6, 9, 10, 15)

11 elements processed

Last modified: Sun Mar 19 18:37:24 2006 CS61B: Lecture #26 11


	CS61B Lecture #26
	Purposes of Sorting
	Some Definitions
	Classifications
	Sorting by Insertion
	Inversions
	Shell's sort
	Example of Shell's Sort
	Sorting by Selection: Heapsort
	Merge Sorting
	Illustration of Internal Merge Sort

