Quicksort: Speed through Probability

Today: Sorting, continued

- Quicksort
- Selection
- Distribution counting
- Radix sorts

Next topic readings: Data Structures, Chapter 9.
Public Service Announcement: Residential Computing is hiring. Be an RCC and get paid for your computer skills. Flexible Hours, Work Study: $\$ 11.97 /$ hour Past RCC's have gone on to places like Google, Apple, Microsoft and eBay. For more information visit:
http://rescomp.berkeley.edu/rcchiring.

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, \#inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

> | 16 | 10 | 13 | 18 | -4 | -7 | 12 | -5 | 19 | 15 | 0 | 22 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

> | -4 | -5 | -7 | -1 | 10 | 0 | 12 | 15 | 13 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $18|19| 293422$

- Now everything is "close to" right, so just do insertion sort:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline-7 & -5 & -4 & -1 & 0 & 10 & 12 & 13 & 15 & 16 & 18 & 19 & 22 & 29 & 34 \\
\hline
\end{array}
$$

Performance of Quicksort

- Probabalistic time:
- If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: $\Theta\left(N^{2}\right)$.
$-\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega\left(N^{2}\right)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\text {th }}$ smallest element in data.

- Obvious method: sort, select element \#k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
- Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
- Partition around some pivot, p, as in quicksort, arrange that pivo \dagger ends up at dividing line.
- Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
- If $m=k$, you're done: p is answer.
- If $m>k$, recursively select $k^{\text {th }}$ from left half of sequence.
- If $m<k$, recursively select $(k-m-1)^{\text {th }}$ from right half of sequence.

Selection Performance

- For this algorithm, if m roughly in middle each time, cost is

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N=1, \\
N+C(N / 2), & \text { otherwise. }\end{cases} \\
& =N+N / 2+\ldots+1 \\
& =2 N-1 \in \Theta(N)
\end{aligned}
$$

- But in worst case, get $\Theta\left(N^{2}\right)$, as for quicksort.
- By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

Selection Example

Problem: Find just item \#10 in the sorted version of array:
Initial contents:

51	60	21	-4	37	4	49	1040	$* 59$	0	13	2	39	11	46

Looking for \#10 to left of pivot 40:

0
Looking for \#6 to right of pivot 4:

Looking for \#1 to right of pivot 31:

Just two elements; just sort and return \#1:

Result: 39

Last modified: Wed Mar 22 17:16:35 2006
CS61B: Lecture \#27 6

Better than $N \lg N$

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are N ! possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do N ! different combinations of move operations.
- Therefore, there must be N ! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^{k}.
- Thus, need enough tests so that $2^{k}>N$!, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$
m!\in \sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m}\left(1+\Theta\left(\frac{1}{m}\right)\right)
$$

this tells us that

$$
k \in \Omega(N \lg N) .
$$

Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to $k N$, for some small constant k ?
- One technique: count the number of items $<1,<2$, etc.
- If $M_{p}=\#$ items with value $<p$, then in sorted order, the $j^{\text {th }}$ item with value p must be $\# M_{p}+j$.
- Gives linear-time algorithm.

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

be, cad, con, can, set, cat, bat, let, bet cad, can, cat, bat, be, set, let, bet, con
bat, be, bet, cad, can, cat, con, let, set

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of \#records.
- How to compare?
- To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^{2}$ operations.
- While radix sort takes $B=N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$
\Theta(N+N \lg N)=\Theta(N \lg N)
$$

