
CS61B Lecture #27

Today: Sorting, continued

• Quicksort

• Selection

• Distribution counting

• Radix sorts

Next topic readings: Data Structures, Chapter 9.

Public Service Announcement: Residential Computing is hiring. Be an
RCC and get paid for your computer skills. Flexible Hours, Work Study:
$11.97/hour Past RCC’s have gone on to places like Google, Apple, Mi-
crosoft and eBay. For more information visit:

http://rescomp.berkeley.edu/rcchiring.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 1

http://rescomp.berkeley.edu/rcchiring

Quicksort: Speed through Probability

Idea:

• Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything ≤ on the low end.

• Repeat recursively on the high and low pieces.

• For speed, stop when pieces are “small enough” and do insertion sort
on the whole thing.

• Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

• Have to choose pivot well. E.g.: median of first, last and middle
items of sequence.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 2

Example of Quicksort

• In this example, we continue until pieces are size ≤ 4.

• Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

• Last step is insertion sort.

16 10 13 18 -4 -7 12 -5 19 15 0 222934-1*

-4 -5 -7 -1 18 13 12 10 19 15 0 22293416*

-4 -5 -7 -1 15 1312*10 0 16 19*222934 18

-4 -5 -7 -1 10 0 12 15 13 16 18 19 293422

• Now everything is “close to” right, so just do insertion sort:

-7 -5 -4 -1 0 10 12 13 15 16 18 19 222934

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 3

Performance of Quicksort

• Probabalistic time:

– If choice of pivots good, divide data in two each time: Θ(N lg N)
with a good constant factor relative to merge or heap sort.

– If choice of pivots bad, most items on one side each time: Θ(N 2).

– Ω(N lg N) in best case, so insertion sort better for nearly or-
dered input sets.

• Interesting point: randomly shuffling the data before sorting makes
Ω(N 2) time very unlikely!

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 4

Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

• Obvious method: sort, select element #k, time Θ(N lg N).

• If k ≤ some constant, can easily do in Θ(N) time:

– Go through array, keep smallest k items.

• Get probably Θ(N) time for all k by adapting quicksort:

– Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

– Suppose that in the result, pivot is at index m, all elements ≤
pivot have indicies ≤ m.

– If m = k, you’re done: p is answer.

– If m > k, recursively select kth from left half of sequence.

– If m < k, recursively select (k − m − 1)th from right half of
sequence.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 5

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
51 60 21 -4 37 4 49 1040*59 0 13 2 39 11 46 31

0

Looking for #10 to left of pivot 40:
13 31 21 -4 374* 11 10 39 2 0 40 5951 494660

0

Looking for #6 to right of pivot 4:
-4 0 2 4 37 13 11 10 39 2131* 40 59 51 494660

4

Looking for #1 to right of pivot 31:
-4 0 2 4 21 13 11 10 31 3937 40 5951 494660

9

Just two elements; just sort and return #1:
-4 0 2 4 21 13 11 10 31 3739 40 5951 494660

9

Result: 39

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 6

Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

C(N) =















1, if N = 1,
N + C(N/2), otherwise.

= N + N/2 + . . . + 1

= 2N − 1 ∈ Θ(N)

• But in worst case, get Θ(N 2), as for quicksort.

• By another, non-obvious algorithm, can get Θ(N) worst-case time
for all k (take CS170).

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 7

Better than N lg N?

• Can prove that if all you can do to keys is compare them then sorting
must take Ω(N lg N).

• Basic idea: there are N ! possible ways the input data could be
scrambled.

• Therefore, your program must be prepared to do N ! different com-
binations of move operations.

• Therefore, there must be N ! possible combinations of outcomes of
all the if tests in your program (we’re assuming that comparisons are
2-way).

• Since each if test goes two ways, number of possible different out-
comes for k if tests is 2k.

• Thus, need enough tests so that 2k > N !, which means k ∈ Ω(lg N !).

• Using Stirling’s approximation,

m! ∈
√

2πm




m

e





m




1 + Θ






1

m











 ,

this tells us that
k ∈ Ω(N lg N).

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 8

Beyond Comparison: Distribution Counting

• But suppose can do more than compare keys?

• For example, how can we sort a set of N integer keys whose values
range from 0 to kN , for some small constant k?

• One technique: count the number of items < 1, < 2, etc.

• If Mp =#items with value < p, then in sorted order, the jth item
with value p must be #Mp + j.

• Gives linear-time algorithm.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 9

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3

0

3

1

1

2

2

3

2

4

1

5

1

6

3

7

0

8

3

9

Counts

0

< 0

3

< 1

6

< 2

7

< 3

9

< 4

11

< 5

12

< 6

13

< 7

16

< 8

16

< 9

Running sum

0

0

0 0 1

3

1 1 2

6

3 3 4

9

4 5

11

6

12

7

13

7 7 9

16

9 9

• “Counts” line gives # occurrences of each key.

• “Running sum” gives cumulative count of keys ≤ each value. . .

• . . . which tells us where to put each key:

• The first instance of key k goes into slot m, where m is the number
of key instances that are < k.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 10

Radix Sort

Idea: Sort keys one character at a time.

• Can use distribution counting for each digit.

• Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

• LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

be

‘t’

cad

‘d’

can
con

‘n’

bet
let
bat
cat
set

‘t’

Pass 1
(by char #2)

be, cad, con, can, set, cat, bat, let, bet

bat
cat
can
cad

‘a’

bet
let
set
be

‘e’

con

‘o’

Pass 2
(by char #1)

cad, can, cat, bat, be, set, let, bet, con

bet
be
bat

‘b’

con
cat
can
cad

‘c’

let

‘l’

set

‘s’

Pass 3
(by char #0)

bat, be, bet, cad, can, cat, con, let, set

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 11

MSD Radix Sort

• A bit more complicated: must keep lists from each step separate

• But, can stop processing 1-element lists

A posn

? set, cat, cad, con, bat, can, be, let, bet 0
? bat, be, bet / cat, cad, con, can / let / set 1
bat / ? be, bet / cat, cad, con, can / let / set 2
bat / be / bet / ? cat, cad, con, can / let / set 1
bat / be / bet / ? cat, cad, can / con / let / set 2
bat / be / bet / cad / can / cat / con / let / set

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 12

Performance of Radix Sort

• Radix sort takes Θ(B) time where B is total size of the key data .

• Have measured other sorts as function of #records.

• How to compare?

• To have N different records, must have keys at least Θ(lg N) long
[why?]

• Furthermore, comparison actually takes time Θ(K) where K is size
of key in worst case [why?]

• So N lg N comparisons really means N(lg N)2 operations.

• While radix sort takes B = N lg N time.

• On the other hand, must work to get good constant factors with
radix sort.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 13

And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

• Need balance to really use for sorting [next topic].

• Given balance, same performance as heapsort: N insertions in time
lg N each, plus Θ(N) to traverse, gives

Θ(N + N lg N) = Θ(N lg N)

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 14

Summary

• Insertion sort: Θ(Nk) comparisons and moves, where k is maximum
amount data is displaced from final position.

– Good for small datasets or almost ordered data sets.

• Quicksort: Θ(N lg N) with good constant factor if data is not patho-
logical. Worst case O(N 2).

• Merge sort: Θ(N lg N) guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: Θ(N lg N) guaranteed.

• Radix sort, distribution sort: Θ(B) (number of bytes). Also good for
external sorting.

Last modified: Wed Mar 22 17:16:35 2006 CS61B: Lecture #27 15

	CS61B Lecture #27
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance
	Better than N lg N?
	Beyond Comparison: Distribution Counting
	Distribution Counting Example
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

