CS61B Lecture #27

Today: Sorting, continued

- Quicksort
- Selection
- Distribution counting
- Radix sorts

Next topic readings: Data Structures, Chapter 9.

Public Service Announcement: Residential Computing is hiring. Be an RCC and get paid for your computer skills. Flexible Hours, Work Study: \$11.97/hour Past RCC's have gone on to places like Google, Apple, Microsoft and eBay. For more information visit:

http://rescomp.berkeley.edu/rcchiring.

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- \bullet In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

Now everything is "close to" right, so just do insertion sort:

-5 -4 -1 0 10 12 13 15 16 18 19 22 29 34

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- ullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- ullet Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If m=k, you're done: p is answer.
 - If m > k, recursively select k^{th} from left half of sequence.
 - If m < k, recursively select $(k m 1)^{\text{th}}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

Looking for #10 to left of pivot 40:

Looking for #6 to right of pivot 4:

Looking for #1 to right of pivot 31:

Just two elements; just sort and return #1:

Result: 39

Selection Performance

ullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$
$$= N + N/2 + \ldots + 1$$
$$= 2N - 1 \in \Theta(N)$$

- ullet But in worst case, get $\Theta(N^2)$, as for quicksort.
- ullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

Better than N Ig N?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data could be scrambled.
- ullet Therefore, your program must be prepared to do N! different combinations of move operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k .
- ullet Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

this tells us that

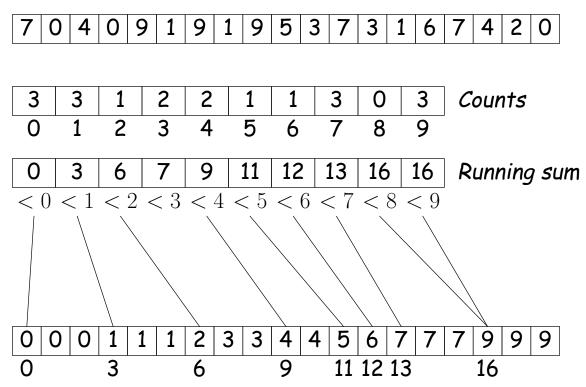
$$k \in \Omega(N \lg N).$$

Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items < 1, < 2, etc.
- ullet If $M_p=$ #items with value < p, then in sorted order, the $j^{ extstyle e$ with value p must be $\#M_p + j$.
- Gives linear-time algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:



- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys
 < each value...
- ... which tells us where to put each key:
- ullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

Radix Sort

Sort keys one character at a time. Idea:

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD) radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

bat, be, bet, cad, can, cat, con, let, set

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / \star cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- ullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort takes $B=N\lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- ullet Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- \bullet Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.