CS61B Lecture #3: Containers

e Readers Available: from Vick Copy (corner of Euclid and Hearst)
not Copy Central! Also online.

¢ Please read Chapter 2 of Assorted Materials on Java from the
reader.

e Room change: Discussion 114 (3-4 Thurs.) is now in 289 Cory (used
to be 3111 Etch.)

e Midterm is tentatively scheduled for the evening of 9 March (Thurs-
day).

e Project 1 will be due the preceding week (1 March).

e Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 1

Values and Containers

e Values are numbers, booleans, and pointers. Values never change.

3 ‘a true % AN f

e Simple containers contain values:

(3] L] e
Examples: variables, fields, individual array elements, parameters.

e Structured containers contain (O or more) other containers:

Class Object Array Object Empty Object

o1 2

h
42/17] 9|
Alternative 'h:| 3 3
2|9

Notation | t:

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 2

Pointers

e Pointers (or references) are values that reference (point to) con-
tainers.

e One particular pointer, called null, points to nothing.

e In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 3

Containers in Java

e Containers may be named or anonymous.

e In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

named simple containers (fields)
within structured containers
h A h/t
. \ | [
Pl 3] KN
simple container structured containers
(local variable) (anonymous)

e In Java, assignment copies values into simple containers.

e Exactly like Schemel!

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 4

Defining New Types of Object

e Class declarations introduce new types of objects.
e Example: list of integers:

public class IntList {
// Constructor function
// (used to initialize new object)
/** List cell containing (HEAD, TAIL). %/
public IntList (int head, IntList tail) {
this.head = head; this.tail = tail;
}

// Names of simple containers (fields)
public int head;
public IntList tail;

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 5

Primitive Operations

N
QN

Ll 430

IntList Q, L;

= new IntList(3, null);

=L; CQ:IIi

new IntlList(42, null);
.tail = Q;

L.tail.head += 1;
// Now Q.head == 43
// and L.tail.head == 43

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 6

Destructive vs. Non-destructive

Problem: Given a (pointer to a) list of integers, L, and an integer in-
crement n, return a list created by incrementing all elements of the list
by n.

/** List of all items in P incremented by n. */
static IntList incrlList (IntList P, int n) {
if (P == null)
return null;
else return new IntList (P.head+n, incrList(P.tail, n));

¥

We say incrList is non-destructive, because it leaves the input objects
unchanged, as shown on the left. A destructive method may modify the
input objects, so that the original data is no longer available, as shown
on the right:

After Q = incrList(L, 2):
M N
eI N

Last modified: Mon Jan 23 14:30:41 2006

5] |-49]

CS61B: Lecture #3 7

After Q = dincrList(L, 2) (destructive):

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList (IntList P, int n) {
if (P == null)
return null; P: ‘ 3 ‘ H43‘ 56N

IntList result, last;
result = last last:

= new IntList (P.head+n, null); [:E}'44’#4’44'4444““\\\\\\\\
result:| -——— 5] ——{45] 58]\

while (P.tail != null) {
P = P.tail;
last.tail
= new IntList (P.head+n, null);
last = last.tail;
}

return result;

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 8

	CS61B Lecture #3: Containers
	Values and Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Destructive vs. Non-destructive
	An Iterative Version

