
CS61B Lecture #3: Containers

• Readers Available: from Vick Copy (corner of Euclid and Hearst)
not Copy Central! Also online.

• Please read Chapter 2 of Assorted Materials on Java from the
reader.

• Room change: Discussion 114 (3-4 Thurs.) is now in 289 Cory (used
to be 3111 Etch.)

• Midterm is tentatively scheduled for the evening of 9 March (Thurs-
day).

• Project 1 will be due the preceding week (1 March).

• Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 1

Values and Containers

• Values are numbers, booleans, and pointers. Values never change.

3 ’a’ true

• Simple containers contain values:

3x: L: p:

Examples: variables, fields, individual array elements, parameters.

• Structured containers contain (0 or more) other containers:

3

h t

3h:

t:

42

0

17

1

9

2

420

171

92

Class Object Array Object Empty Object

Alternative
Notation

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 2

Pointers

• Pointers (or references) are values that reference (point to) con-
tainers.

• One particular pointer, called null, points to nothing.

• In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

0 1

3

0

9

1

17

0

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 3

Containers in Java

• Containers may be named or anonymous.

• In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

p: 3
h t

7
h t

simple container

(local variable)

structured containers

(anonymous)

named simple containers (fields)

within structured containers

• In Java, assignment copies values into simple containers.

• Exactly like Scheme!

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 4

Defining New Types of Object

• Class declarations introduce new types of objects.

• Example: list of integers:

public class IntList {

// Constructor function

// (used to initialize new object)

/** List cell containing (HEAD, TAIL). */

public IntList (int head, IntList tail) {

this.head = head; this.tail = tail;

}

// Names of simple containers (fields)
public int head;

public IntList tail;

}

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 5

Primitive Operations

IntList Q, L;
L:

Q:

L = new IntList(3, null);

Q = L;

L:

Q:

3

Q = new IntList(42, null);

L.tail = Q;

L:

Q:

3 42

L.tail.head += 1;

// Now Q.head == 43

// and L.tail.head == 43

L:

Q:

3 43

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 6

Destructive vs. Non-destructive

Problem: Given a (pointer to a) list of integers, L, and an integer in-
crement n, return a list created by incrementing all elements of the list
by n.

/** List of all items in P incremented by n. */

static IntList incrList (IntList P, int n) {

if (P == null)

return null;

else return new IntList (P.head+n, incrList(P.tail, n));

}

We say incrList is non-destructive, because it leaves the input objects
unchanged, as shown on the left. A destructive method may modify the
input objects, so that the original data is no longer available, as shown
on the right:

L:

Q:

3 43

5 45

After Q = incrList(L, 2):

L:

Q:

5 45

After Q = dincrList(L, 2) (destructive):

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 7

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList (IntList P, int n) {

if (P == null)

return null;

IntList result, last;

result = last

= new IntList (P.head+n, null);

while (P.tail != null) {

P = P.tail;

last.tail

= new IntList (P.head+n, null);

last = last.tail;

}

return result;

}

P: 3 43 56

last:

result: 5 45 58

Last modified: Mon Jan 23 14:30:41 2006 CS61B: Lecture #3 8

	CS61B Lecture #3: Containers
	Values and Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Destructive vs. Non-destructive
	An Iterative Version

