
CS61B Lecture #32

Today: DSIJ, Chapter 10.

• Threads

• Communication between threads

• Synchronization

• Mailboxes

Coming Up: Backtracking; Graph Structures: DSIJ, Chapter 12

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 1

Threads

• So far, all our programs consist of single sequence of instructions.

• Each such sequence is called a thread (for “thread of control”) in
Java.

• Java supports programs containing multiple threads, which (concep-
tually) run concurrently.

• Actually, on a uniprocessor, only one thread at a time actually runs,
while others wait, but this is largely invisible.

• To allow program access to threads, Java provides the type Thread

in java.lang. Each Thread contains information about, and controls,
one thread.

• Simultaneous access to data from two threads can cause chaos, so
are also constructs for controlled communication, allowing threads
to lock objects, to wait to be notified of events, and to interrupt
other threads.

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 2

But Why?

• Typical Java programs always have > 1 thread: besides the main
program, others clean up garbage objects, receive signals, update
the display, other stuff.

• When programs deal with asynchronous events, is sometimes conve-
nient to organize into subprograms, one for each independent, re-
lated sequence of events.

• Threads allow us to insulate one such subprogram from another.

• GUIs often organized like this: application is doing some compu-
tation or I/O, another thread waits for mouse clicks (like ‘Stop’),
another pays attention to updating the screen as needed.

• Large servers like search engines may be organized this way, with
one thread per request.

• And, of course, sometimes we do have a real multiprocessor.

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 3

Java Mechanics

• To specify the actions “walking” and “chewing gum”:

class Chewer1 implements Runnable {

public void run ()

{ while (true) ChewGum(); }

}

class Walker1 implements Runnable {

public void run ()

{ while (true) Walk(); }

}

// Walk and chew gum

Thread chomp

= new Thread (new Chewer1 ());

Thread clomp

= new Thread (new Walker1 ());

chomp.start (); clomp.start ();

• Concise Alternative (uses fact that Thread implements Runnable):

class Chewer2 extends Thread {

public void run ()

{ while (true) ChewGum(); }

}

class Walker2 extends Thread {

public void run ()

{ while (true) Walk(); }

}

Thread chomp = new Chewer2 (),

clomp = new Walker2 ();

chomp.start ();

clomp.start ();

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 4

Avoiding Interference

• When one thread has data for another, one must wait for the other
to be ready.

• Likewise, if two threads use the same data structure, generally only
one should modify it at a time; other must wait.

• E.g., what would happen if two threads simultaneously inserted an
item into a linked list at the same point in the list?

• A: Both could conceivably execute

p.next = new ListCell(x, p.next);

with the same values of p and p.next; one insertion is lost.

• Can arrange for only one thread at a time to execute a method on a
particular object with either of the following equivalent definitions:

void f (...) {

synchronized (this) {

body of f
}

}

synchronized void f (...) {

body of f
}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 5

Communicating the Hard Way

• Communicating data is tricky: the faster party must wait for the
slower.

• Obvious approaches for sending data from thread to thread don’t
work:
class DataExchanger {

Object value = null;

Object receive () {

Object r; r = null;

while (r == null)

{ r = value; }

value = null;

return r;

}

void deposit (Object data) {

while (value != null) { }

value = data;

}

}

DataExchanger exchanger

= new DataExchanger ();

// thread1 sends to thread2 with

exchanger.deposit ("Hello!");

// thread2 receives from thread1 with

msg = (String) exchanger.receive ();

• BAD: One thread can monopolize machine while waiting; two threads
executing deposit or receive simultaneously cause chaos.

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 6

Primitive Java Facilities

• wait method on Object makes thread wait (not using processor) un-
til notified by notifyAll, unlocking the Object while it waits.

• Example, ucb.util.mailbox has something like this (simplified):

interface Mailbox {

void deposit (Object msg) throws InterruptedException;

Object receive () throws InterruptedException;

}

class QueuedMailbox implements Mailbox {

private List<Object> queue = new LinkedList<Object> ();

public synchronized void deposit (Object msg) {

queue.add (msg);

this.notifyAll (); // Wake any waiting receivers

}

public synchronized Object receive () throws InterruptedException {

while (queue.isEmpty ()) wait ();

return queue.remove (0);

}

}
Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 7

Message-Passing Style

• Use of Java primitives very error-prone. Wait until CS162.

• We will just use mailboxes and be happy.

• They allow the following sort of program structure:

Mailbox
#1

Mailbox
#2

Player
#1

Player
#2

deposit

receive deposit

receive

information flow through Mailbox #1

information flow through Mailbox #2

• Where each Player is a thread that looks like this:

while (! gameOver ()) {

if (myMove ())

outBox.deposit (computeMyMove (lastMove));

else

lastMove = inBox.receive ();

}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 8

More Concurrency

• Previous example can be done other ways, but mechanism is very
flexible.

• E.g., suppose you want to think during opponent’s move:

while (! gameOver ()) {

if (myMove ())

outBox.deposit (computeMyMove (lastMove));

else {

do {

thinkAheadALittle ();

lastMove = inBox.receiveIfPossible ();

} while (lastMove == null);

}

• receiveIfPossible doesn’t wait; returns null if no message yet,
perhaps like this:

public synchronized Object receiveIfPossible ()

throws InterruptedException {

if (queue.isEmpty ())

return null;

return queue.remove (0);

}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 9

Coroutines

• A coroutine is a kind of synchronous thread that explicitly hands off
control to other coroutines so that only one executes at a time. Can
get similar effect with threads and mailboxes.

• Example: recursive inorder tree iterator:

class TreeIterator extends Thread {

Tree root; Mailbox r;

TreeIterator (Tree T, Mailbox r) {

this.root = T; this.dest = r;

}

public void run () {

traverse (root);

r.deposit (End marker);
}

void traverse (Tree t) {

if (t == null) return;

traverse (t.left);

r.deposit (t.label);

traverse (t.right);

}

}

void treeProcessor (Tree T) {

Mailbox m = new QueuedMailbox ();

new TreeIterator (T, m).start ();

while (true) {

Object x = m.receive ();

if (x is end marker)
break;

do something with x;

}

}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 10

Use In GUIs

• Jave runtime library uses a special thread that does nothing but
wait for events like mouse clicks, pressed keys, mouse movement,
etc.

• You can designate an object of your choice as a listener; which
means that Java’s event thread calls a method of that object when-
ever an event occurs.

• As a result, your program can do work while the GUI continues to
respond to buttons, menus, etc.

• Another special thread does all the drawing. You don’t have to be
aware when this takes place; just ask that the thread wake up when-
ever you change something.

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 11

Highlights of a GUI Component

/** A widget that draws multi-colored lines indicated by mouse. */

class Lines extends JComponent implements MouseListener {

private List<Point> lines = new ArrayList<Point> ();

Lines () { // Main thread calls this to create one

setPreferredSize (new Dimension (400, 400));

addMouseListener (this);

}

public synchronized void paintComponent (Graphics g) { // Paint thread

g.setColor (Color.white); g.fillRect (0, 0, 400, 400);

int x, y; x = y = 200;

Color c = Color.black;

for (Point p : lines)

g.setColor (c); c = chooseNextColor (c);

g.drawLine (x, y, p.x, p.y); x = p.x; y = p.y;

}

}

public synchronized void mouseClicked (MouseEvent e) // Event thread

{ lines.add (new Point (e.getX (), e.getY ())); repaint (); }

...

}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 12

Interrupts

• An interrupt is an event that disrupts the normal flow of control of
a program.

• In many systems, interrupts can be totally asynchronous, occurring
at arbitrary points in a program, the Java developers considered
this unwise; arranged that interrupts would occur only at controlled
points.

• In Java programs, one thread can interrupt another to inform it
that something unusual needs attention:

otherThread.interrupt ();

• But otherThread does not receive the interrupt until it waits: meth-
ods wait, sleep (wait for a period of time), join (wait for thread to
terminate), and mailbox deposit and receive.

• Interrupt causes these methods to throw InterruptedException,
so typical use is like this:

try {

msg = inBox.receive ();

} catch (InterruptedException e) { HandleEmergency (); }

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 13

Remote Mailboxes (A Side Excursion)

• RMI: Remote Method Interface allows one program to refer to ob-
jects in another program.

• We use it to allow mailboxes in one program be received from or
deposited into in another.

• To use this, you define an interface to the remote object:

import java.rmi.*;

interface Mailbox extends Remote {

void deposit (Object msg)

throws InterruptedException, RemoteException;

Object receive ()

throws InterruptedException, RemoteException;

...

}

• On machine that actually will contain the object, you define

class QueuedMailbox ... implements Mailbox {

Same implementation as before, roughly

}

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 14

Remote Objects Under the Hood

// On machine #1: // On Machine #2:

Mailbox outBox Mailbox inBox

= new QueuedMailbox (); = get outBox from machine #1

outBox:

a
QueuedMailbox
queue: [’Hi’,...]

a
Mailbox
stub

inBox:

receive()

receive() request (I/O)

response ’Hi’ (I/O)

• Because Mailbox is an interface, hides fact that on Machine #2
doesn’t actually have direct access to it.

• Requests for method calls are relayed by I/O to machine that has
real object.

• Any argument or return type OK if it also implements Remote or
can be serialized—turned into stream of bytes and back, as can
primitive types and String.

• Because I/O involved, expect failures, hence every method can throw
RemoteException (subtype of IOException).

Last modified: Fri Apr 14 16:34:37 2006 CS61B: Lecture #32 15

	CS61B Lecture #32
	Threads
	But Why?
	Java Mechanics
	Avoiding Interference
	Communicating the Hard Way
	Primitive Java Facilities
	Message-Passing Style
	More Concurrency
	Coroutines
	Use In GUIs
	Highlights of a GUI Component
	Interrupts
	Remote Mailboxes (A Side Excursion)
	Remote Objects Under the Hood

