CS61B Lecture #34

Today: Backtracking searches, game frees.
Coming Up: Graph Structures: DSIJ, Chapter 12

Public Service Announcement: The Student Advocate's Office is ef-
fectively a campus public defender—an executive, non-partisan office
of the student government offering representation, help, and advice to
any student or student group involved in a dispute with the University.
For assistance with residency applications and appeals, financial aid ap-
plications, withdrawals and enrollment, grade appeals, cheating accusa-
tions, sexual assault, discrimination, and other University grievances,
see their web page at advocate.berkeley.edu.

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 1

Searching by “Generate and Test”

e We've been considering the problem of searching a set of data stored
in some kind of data structure: "Is z € S?"

e But suppose we don't have a set S, but know how to recognize what
we're after if we find it: “Is there an = such that P(x)?"

e If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

e Can sometimes be more clever: avoid trying things that won't work,
for example.

e What happens if the set of possible candidates is infinite?

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 2

Backtracking Search

e Backtracking search is one way to enumerate all possibilities.

e Example: Knight's Tour. Find all paths a knight can travel on a chess-
board such that it touches every square exactly once and ends up
one knight move from where it started.

e Inthe example below, the numbers indicate position numbers (knight
starts at 0).

e Here, knight (N) is stuck; how to handle this?

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 3

General Recursive Algorithm

/*x Append to PATH a sequence of knight moves starting at ROW, COL
* that avoids all squares that have been hit already and
that ends up one square away from ENDROW, ENDCOL. B[i] [j] is
true iff row i and column j have been hit on PATH so far.
Returns true if it succeeds, else false (with no change to L).
Call initially with PATH containing the starting square, and
the starting square (only) marked in B. */

boolean findPath (boolean[][] b, int row, int col,
int endRow, int endCol, List path) {
if (L.size () == 64) return isKnightMove (row, col, endRow, endCol);
for (r, c = all possible moves from (row, col)) {
if (! blrllc]) {
blr] [c] = true; // Mark the square
path.add (new Move (r, c));
if (findPath (b, r, c, endRow, endCol, path)) return true;
blr][c] = false; // Backtrack out of the move.
path.remove (path.size ()-1);
}
}
return false;

}

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34



file:advocate.berkeley.edu

Another Kind of Search: Best Move

e Consider the problem of finding the best move in a fwo-person game.
e One way: assign a value to each possible move and pick highest.
- Example: number of our pieces - number of opponent's pieces.

e But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

e So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

e But what if you have a great response to his response?

e How do we organize this sensibly?

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 5

Game Trees, Minimax

e Think of the space of possible continuations of the game as a tree.

e Each node is a position, each edge a move.

-~— My move

%X ~— Opponent’s move

-~— My move

e

e Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

o T always choose child (next position) with maximum value; opponent
chooses minimum value (*Minimax algorithm")

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 6

Alpha-Beta Pruning

e We can prune this tree as we search it.

-5 -— My move

~— Opponent’s move

-— My move

@ e g ~— Opponent’s move
i

e At the "> 5 position, T know that the opponent will not choose to
move here (since he already has a —5 move).

e At the '< —20' position, my opponent knows that I will never choose
to move here (since I already have a —5 move).

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 7

Cutting off the Search

e If you could traverse game free to the bottom, you'd be able to
force a win (if it's possible).

e Sometimes possible near the end of a game.

e Unfortunately, game trees tend to be either infinite or impossibly
large.

e S0, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

e Or we might use iterative deepening (kind of breadth-first search),
and repeat the search at increasing depths until time is up.

e Much more sophisticated searches are possible, however (take C5188).

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 8




Some Pseudocode for Searching

/*x A legal move for WHO that either has an estimated value >= CUTOFF
* or that has the best estimated value for player WHO, starting from
* position START, and looking up to DEPTH moves ahead. */
Move findBestMove (Player who, Position start, int depth, double cutoff)
{
if (start is a won position for who) return CANT_MOVE;
else if (start is a lost position for who) return CANT_MOVE;
else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Move response = findBestMove (who.opponent (), next,
depth-1, -bestSoFar.value ());
if (-response.value () > bestSoFar.value ()) {
SetM's value to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;
if (M.value () >= cutoff) break;
}
}
return bestSoFar;

}

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 9

Static Evaluation

e This leaves static evaluation, which looks just at the next possible
move:

Move guessBestMove (Player who, Position start, double cutoff)
{
Move bestSoFar;
bestSoFar = Move.REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Set M's value to heuristic guess of value to who of next;
if (M.value () > bestSoFar.value ()) {
bestSoFar = M;
if (M.value () >= cutoff)
break;

}

return bestSoFar;

}

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 10

Coroutines (redone from Lecture #32, slide 10)

e A coroutine is a kind of synchronous thread that explicitly hands of f
control to other coroutines so that only one executes at a time. Can
get similar effect with threads and mailboxes.

e Example: recursive inorder tree iterator:

class Treelterator extends Thread {
Tree root; Mailbox r;
Treelterator (Tree T, Mailbox r) {
this.root = T; this.dest = r; void treeProcessor (Tree T) {
} Mailbox m = new QueuedMailbox ();
public void run () { new Treelterator (T, m).start ();
traverse (root); while (true) {
r.deposit (End marker) ; Object x = m.receive ();
} if (x is end marker)
void traverse (Tree t) { break;
if (t == null) return; do something with x;
traverse (t.left);
r.deposit (t.label);
traverse (t.right);

}

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 11




	CS61B Lecture #34
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Some Pseudocode for Searching
	Static Evaluation
	Coroutines (redone from Lecture #32, slide 10)

