CS61B Lecture #34

Today: Backtracking searches, game trees.
Coming Up: Graph Structures: DSIJ, Chapter 12

Public Service Announcement: The Student Advocate's Office is ef-
fectively a campus public defender—an executive, non-partisan office
of the student government offering representation, help, and advice to
any student or student group involved in a dispute with the University.
For assistance with residency applications and appeals, financial aid ap-
plications, withdrawals and enrollment, grade appeals, cheating accusa-
tions, sexual assault, discrimination, and other University grievances,
see their web page at advocate.berkeley.edu.

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 1

file:advocate.berkeley.edu

Searching by “"Generate and Test”

e We've been considering the problem of searching a set of data stored
in some kind of data structure: "Is = € S?"

e But suppose we don’t have a set S, but know how to recognhize what
we're after if we find it: "Is there an x such that P(z)?"

e If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

e Can sometimes be more clever: avoid trying things that won't work,
for example.

e What happens if the set of possible candidates is infinite?

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 2

Backtracking Search

e Backtracking search is one way to enumerate all possibilities.

e Example: Knight's Tour. Find all paths a knight can travel on a chess-
board such that it fouches every square exactly once and ends up
one knight move from where it started.

e In the example below, the numbers indicate position numbers (knight
starts at 0).

e Here, knight (N) is stuck; how to handle this?

10 2

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 3

General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL
* that avoids all squares that have been hit already and

that ends up one square away from ENDROW, ENDCOL. B[il[j] is
true iff row i and column j have been hit on PATH so far.
Returns true if it succeeds, else false (with no change to L).
Call initially with PATH containing the starting square, and

X X %X * ¥

the starting square (only) marked in B. %/

boolean findPath (boolean[][] b, int row, int col,
int endRow, int endCol, List path) {
if (L.size () == 64) return isKnightMove (row, col, endRow, endCol);
for (r, c = all possible moves from (row, col)) {
if (! blrllcl) {
b[r][c] = true; // Mark the square
path.add (new Move (r, c));
if (findPath (b, r, c, endRow, endCol, path)) return true;
blr][c] = false; // Backtrack out of the move.
path.remove (path.size ()-1);
+
+

return false;

}

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 4

Another Kind of Search: Best Move

e Consider the problem of finding the best move in a two-person game.
e One way: assign a value to each possible move and pick highest.
- Example: number of our pieces - number of opponent’s pieces.

e But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

e So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

e But what if you have a great response to his response?

e How do we organize this sensibly?

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 5

Game Trees, Minimax

e Think of the space of possible continuations of the game as a tree.
e Each node is a position, each edge a move.

~— My move

}{ > -— Opponent’'s move

~— My move

LT .

e Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

e T always choose child (next position) with maximum value; opponent
chooses minimum value ("Minimax algorithm")

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 6

Alpha-Beta Pruning

e We can prune this tree as we search it.

-5 ~— My move

~—— Opponent’s move

x

>3 ~— My move

Sho -

e At the > 5 position, T know that the opponent will not choose to
move here (since he already has a —5 move).

e At the '< —20' position, my opponent knows that I will never choose
to move here (since T already have a —5 move).

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 7

Cutting off the Search

e If you could traverse game tree to the bottom, you'd be able to
force a win (if it's possible).

e Sometimes possible near the end of a game.

e Unfortunately, game trees tend to be either infinite or impossibly
large.

e So, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

e Or we might use iterative deepening (kind of breadth-first search),
and repeat the search at increasing depths until time is up.

e Much more sophisticated searches are possible, however (take CS188).

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 8

Some Pseudocode for Searching

/** A legal move for WHO that either has an estimated value >= CUTOFF

* or that has the best estimated value for player WHO, starting from

* position START, and looking up to DEPTH moves ahead. */
Move findBestMove (Player who, Position start, int depth, double cutoff)
{

if (start is a won position for who) return CANT_MOVE;
else if (start is a lost position for who) return CANT_MOVE;
else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Move response = findBestMove (who.opponent (), next,
depth-1, -bestSoFar.value ());
if (-response.value () > bestSoFar.value ()) {
SetM'svalue to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;
if (M.value () >= cutoff) break;
¥
+

return bestSoFar;

+

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 9

Static Evaluation

e This leaves static evaluation, which looks just at the next possible
move:

Move guessBestMove (Player who, Position start, double cutoff)
{
Move bestSoFar;
bestSoFar = Move.REALLY_BAD_MOVE;
for (each legal move, M, for who from position start) {
Position next = start.makeMove (M);
Set M's value to heuristic guess of value to who of next;
if (M.value () > bestSoFar.value ()) {
bestSoFar = M;
if (M.value () >= cutoff)
break;

+

return bestSoFar;

+

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 10

Coroutines (redone from Lecture #32, slide 10)

e A coroutineis a kind of synchronous thread that explicitly hands of f
control to other coroutines so that only one executes at a time. Can
get similar effect with threads and mailboxes.

e Example: recursive inorder tree iterator:

class Treelterator extends Thread {
Tree root; Mailbox r;
Treelterator (Tree T, Mailbox r) {

this.root = T; this.dest = r; void treeProcessor (Tree T) {
} Mailbox m = new QueuedMailbox ();
public void run () { new Treelterator (T, m).start ();
traverse (root); while (true) {
r.deposit (End marker) ; Object x = m.receive ();
} if (x is end marker)
void traverse (Tree t) { break;
if (t == null) return; do something with x;
traverse (t.left); }
r.deposit (t.label); +
traverse (t.right);
+
+

Last modified: Fri Apr 14 16:35:19 2006 CS61B: Lecture #34 11

	CS61B Lecture #34
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Some Pseudocode for Searching
	Static Evaluation
	Coroutines (redone from Lecture #32, slide 10)

