CS61B Lecture #4: Simple Pointer Manipulation

Announcements:

e Discussion 114 (3-4 Thurs.) is now in 289 Cory (used to be 3111
Etch.)

e Next week and (maybe) from then on, discussion 114 will be in 3102
Etcheverry.

Public Service Announcement:

e Residential Computing, which provides tech support in residence halls,
is currently hiring in programming, marketing, system administra-
tion, and more. Flexible hours and work study, $12.74 to $19.32
an hour. Applications due Wednesday, February 1st, 2006; see the
notice on www.rescomp.berkeley.edu.

Today: More pointer hacking.

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 1

Destructive Incrementing

Destructive solutions may modify the original list to save time or space:

/**% List of all items in P incremented by n. May destroy original. */
static IntList dincrList (IntList P, int n) {

if (P == null) X = IntList.list (3, 43, 56);
return null; /% IntList.list from HW #1 */

else {
P.head += n;
P.tail = dincrList (P.tail, n);
return P;
}
}

Q = dincrList (X, 2);

L]]

/**% List L destructively incremented

* by n. */ P:
static IntList dincrList (IntList L, int n) {

// ’for’ can do more than count!

for (IntList p = L; p != null; p = p.tail)

p.head += n;
return L;

}

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 2

Another Way to View Pointers

e Some folks find the idea of “copying an arrow" somewhat odd.
e Alternative view: think of a pointer as a label, like a street address.

e Each object has a permanent label on it, like the address plaque on
a house.

e Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

e One view:

e Alternative view:

last:
result:

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 3

Another Example: Non-destructive List Deletion

If Lis thelist [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new
list [1, 9].

/** The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll (IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return removeAll (L.tail, x);
else
return new IntList (L.head, removeAll (L.tail, x));

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 4

Iterative Non-destructive List Deletion

Same as before, but use front-to-back iteration rather than recursion.
/#* The list resulting from removing all instances of X from L
* non-destructively. */
static IntList removeAll (IntList L, int x) {
IntList result, last; .
result = last = null; P: 2‘ 4+4’\1‘ 4+4’\2‘ 4+4’~9 F\J
for (; L != null; L = L.tail) { L;E
/* L '= null and 7 is true. *

/
if (x == L.head) result:| 1] $ 59\
continue; .
else if (last == null) last: = removeAll (P, 2)

|
result = last = new IntList (L.head, null); P does noT'change.
else
last = last.tail = new IntList (L.head, null);

}
return result;
}
Here, Z is the loop invariant:
Result is all elements of L; not equal to x up to and not
including L, and last points to the last element of result,
if any. We use L, here to mean “the original value of L."

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 5

Aside: How to Write a Loop (in Theory)

e Try to give a description of how things look on any arbitrary itera-
tion of the loop.

e This description is known as a loop invariant, because it is true from
one iteration to the next.

e The loop body then must

- Start from any situation consistent with the invariant;
- Make progress in such a way as fo make the invariant true again.
while (condition) {
// Invariant true here
loop body
// Invariant again true here
b

// Invariant true and condition false.

e So if (invariant and not condition) is enough to insure we've got the
answer, we're done!

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 6

Destructive Deletion

— : Original

Q: [+—42]-

/** The list resulting from removing all instances of X from L.
* The original list may be destroyed. */
static IntList dremoveAll (IntList L, int x) {
if (L == null)
return null;
else if (L.head == x)
return dremoveAll (L.tail, x);
else {
L.tail = dremoveAll (L.tail, x);
return L;

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 7

Iterative Destructive Deletion

/*x The list resulting from removing all instances of X from L.
* (QOriginal contents of L may be destroyed. */
static IntList dremoveAll (IntList L, int x) {
IntList result, last;
result = last = null;
while (L != null) { P:
IntList next = L.tail;
if (x != L.head) { result:
if (last == null) last:
result = last = L;
else LIEQ

laét last.tail = 1; next:\] P = dremoveAll (P, 2)
L.tail null;

}
L =
}

return result;

}

next;

Last modified: Wed Jan 25 13:16:23 2006 CS61B: Lecture #4 8

	CS61B Lecture #4: Simple Pointer Manipulation
	Destructive Incrementing
	Another Way to View Pointers
	Another Example: Non-destructive List Deletion
	Iterative Non-destructive List Deletion
	Aside: How to Write a Loop (in Theory)
	Destructive Deletion
	Iterative Destructive Deletion

