
CS 61B A* Search and MSTs Spring 2020
1 A* Search
For the graph below, let g(u, v) be the weight of the edge between any nodes u and v. Let
h(u, v) be the value returned by the heuristic for any nodes u and v. Remember the heuristic
serves to estimate the distance between two nodes u and v.

A

B C

ED

F

G

1 1

4

3

3 2

2

3

Edge weights: Heuristics:
g(A, B) = 1 h(A, G) = 8
g(B, C) = 3 h(B, G) = 6
g(C, F) = 2 h(C, G) = 5
g(C, G) = 4 h(F, G) = 1
g(F, G) = 1 h(D, G) = 6
g(A, D) = 2 h(E, G) = 3
g(D, E) = 3
g(E, G) = 3

(a) Given the weights and heuristic values for the graph above, what would A* search return as
the shortest path from A to G?

A* would return the path A-D-E-G.

A* is different from Dijkstra’s because it finds the shortest distance from a start node to a
specific goal node g (rather than to all nodes). Instead of choosing the node with the smallest
dist(v) value to pop off the fringe, in A* we choose the node with the smallest dist(v)
+ h(v, g) sum. Remember, dist(v) represents the distance from the start node to node
v. The search is finished when we pop the goal node off of the fringe.

In the chart below, we keep track of dist values at each iteration. Note that we stop as soon as
we pop G.

CS 61B, Spring 2020, A* Search and MSTs 1



dist(v)
v Init Pop A Pop B Pop D Pop E Pop G
A 0 0 0 0 0
B ∞ 1 1 1 1
C ∞ ∞ 4 4 4
D ∞ 2 2 2 2
E ∞ ∞ ∞ 5 5
F ∞ ∞ ∞ ∞ ∞

G ∞ ∞ ∞ ∞ 8

In order to now derive the path from this table, we start with G and find the node that we
traversed right before G. This will be the node that was popped when G obtained its final dist
value (the value it has when it’s popped). We notice this node is E. We then find the node we
traversed right before E and so on. This gets us A-D-E-G.

(b) Is the heuristic admissible? Why or why not? A heuristic is admissible if it never overestimates
the distance it is estimating.

The heuristic is not admissible because h(C, G) = 5, but the shortest path from C to G has
length 3.

This is why A* returns A-D-E-G (total path distance of 8) when A-B-C-F-G (total path dis-
tance of 7) is actually the shortest path. Without an admissible heuristic, A* cannot guarantee
that it will return the shortest path.

CS 61B, Spring 2020, A* Search and MSTs 2



2 Minimum Spanning Trees

A

B

C

D

E

F

1

2
2

1

2

3

3
1

4

(a) Perform Prim’s algorithm to find a minimum spanning tree of the graph above. Pick A as the
initial node. If there are multiple nodes with the same cost, process them in alphabetical order.

Prim’s algorithm adds the shortest edge connecting some node already in the tree to one that
isn’t yet. This continues until all nodes are in the tree (note this happens when there are n - 1
edges, where n is the number of nodes). Initially, A is the only node in our tree.

A

A C
1

A

B

C
1

2

A

B

C

D

1

2

1

CS 61B, Spring 2020, A* Search and MSTs 3



A

B

C

D

E
1

2

1

3

A

B

C

D

E

F

1

2

1

3

1

(b) Use Kruskal’s algorithm to find a valid minimum spanning tree of the graph above. If there
are multiple edges with the same cost, process them in alphabetical order. Will Prim’s and
Kruskal’s always return the same MST?

Kruskal’s algorithm goes through every edge in increasing order of weight. If the edge selected
connects two subtrees that haven’t yet been connected, it adds that edge to the MST. This
continues until all nodes are connected into one tree.

A

B

C

D

E

F

1

A

B

C

D

E

F

1

1

CS 61B, Spring 2020, A* Search and MSTs 4



A

B

C

D

E

F

1

1

1

A

B

C

D

E

F

1

2

1

1

A

B

C

D

E

F

1

2

1

3

1

Prim’s and Kruskal’s happen to output the same MST here, but it is also possible for Kruskal’s
algorithm to return a different MST based on how its sorting breaks ties. For example, instead
of the C-E edge that was chosen last, we could have chosen the D-E edge. This would create
the following MST:

A

B

C

D

E

F

1

2

1

3
1

CS 61B, Spring 2020, A* Search and MSTs 5



(c) Draw the final state of the tree that results from union find operations executed when running
Kruskal’s on the graph above. When selecting a new root, break ties alphabetically.

Without path compression: To run Kruskal’s we need to execute union find operations. This
is so we can find which subtree a node currently belongs to as well as union two subtrees
when we connect them by an edge.

A

C

A

C

B

D

A

C

B

D

E

F

A

C B

D

E

F

CS 61B, Spring 2020, A* Search and MSTs 6



A

C B

D

E

F

With path compression: Just like before, to run Kruskal’s we need to execute union find
operations. This is so we can find which subtree a node currently belongs to as well as union
two subtrees when we connect them by an edge. However, with path compression we also
want to compress paths whenever possible. This means that whenever we run a find operation
we compress the path to the root.

A

C

A

C

B

D

A

C

B

D

E

F

CS 61B, Spring 2020, A* Search and MSTs 7



A

C B

D

E

F

When we call find(D) to check whether we want to add edge (C, D), we compress D’s path to
the root:

A

C B D

E

F

A

C B D E

F

CS 61B, Spring 2020, A* Search and MSTs 8


