
CS 61B Discussion 3: Pointers Spring 2020
1 Boxes and Pointers
Draw a box and pointer diagram to represent the IntLists L, M, and N after each statement.
IntList L = IntList.list(1, 2, 3, 4);
IntList M = L.tail.tail;
IntList N = IntList.list(5, 6, 7);
N.tail.tail.tail = N;
L.tail.tail = N.tail.tail.tail.tail;
M.tail.tail = L;

Extra: Draw a box and pointer diagram to represent the IntLists L1, L2, and L3 after each state-
ment.
IntList L1 = IntList.list(1, 2, 3);
IntList L2 = new IntList(4, L1.tail);
L2.tail.head = 13;
L1.tail.tail.tail = L2;
IntList L3 = IntList.list(50);
L2.tail.tail = L3;

=======

CS 61B, Spring 2020, Discussion 3: Pointers 1

2 Destructive or Nondestructive?
Below is a method that takes in an IntList and returns the value of the head of the IntList. Assume
that L is never null.
/** Returns the head of IntList L. Assumes that L is not null. */
public static int getHead(IntList L) {

int listHead = L.head;
L = new IntList(5, null);
return listHead;

}

Is the above method destructive or nondestructive? Explain.

CS 61B, Spring 2020, Discussion 3: Pointers 2

3 Reversing a Linked List
Implement the following method, which reverses an IntList nondestructively. The original IntList
should not be modified. Instead, the method should return a new IntList that contains the elements
of L in reverse order.
/** Nondestructively reverses IntList L. */
public static IntList reverseNondestructive(IntList L) {

}

Extra: Implement the following method which destructively reverses an IntList.
/** Destructively reverses IntList L. */
public static IntList reverseDestructive(IntList L) {

}

CS 61B, Spring 2020, Discussion 3: Pointers 3

4 Inserting into a Linked List
Implement the following method to insert an element item at a given position position of an
IntList L. For example, if L is (1 -> 2 -> 4) then the result of calling insert(L, 3, 2) yields
the list (1 -> 2 -> 3 -> 4). This method should modify the original list (do not create an entirely
new list from scratch). This method should return a pointer to the front of the resulting IntList.
Use recursion.
/** Inserts item at the given position in IntList L and returns the resulting

* IntList. If the value of position is past the end of the list, inserts the

* item at the end of the list. Uses recursion. */
public static IntList insertRecursive(IntList L, int item, int position) {

}

Extra: Implement the method described above using iteration. insertIterative is a destruc-
tive method and should therefore modify the original list (just like the previous problem, do not
create an entirely new list from scratch).
/** Inserts item at the given position in IntList L and returns the resulting

* IntList. If the value of position is past the end of the list, inserts the

* item at the end of the list. Uses iteration. */
public static IntList insertIterative(IntList L, int item, int position) {

}

CS 61B, Spring 2020, Discussion 3: Pointers 4

5 Extra: Shifting a Linked List
Implement the following method to circularly shift an IntList to the left by one position destruc-
tively. For example, if the original list is (5 -> 4 -> 9 -> 1 -> 2 -> 3) then this method should return
the list (4 -> 9 -> 1 -> 2 -> 3 -> 5). Because it is a destructive method, the original IntList should
be modified. Do not use the word new.
/** Destructively shifts the elements of the given IntList L to the

* left by one position. Returns the first node in the shifted list. */
public static IntList shiftListDestructive(IntList L) {

}

CS 61B, Spring 2020, Discussion 3: Pointers 5

