
CS 61B Discussion 4: Objects Spring 2020
1 Objects Review
Answer the following questions about the Avatar class.

1 public class Avatar {
2 public static String electricity; public String fluid;
3

4 public Avatar(String str1, String str2) {
5 Avatar.electricity = str1;
6 this.fluid = str2;
7 }
8

9 public static void main(String[] args) {
10 Avatar foo1 = new Avatar("one ", "two");
11 Avatar foo2 = new Avatar("three ", "four");
12 System.out.println(foo1.electricity + foo1.fluid);
13 foo1.electricity = "I declare ";
14 foo1.fluid = "a thumb war";
15 System.out.println(foo2.electricity + foo2.fluid);
16 }
17 }

(a) Determine what would be printed after executing the main method of class Avatar.

The main method will print the following:
three two
I declare four

(b) If we changed only line 2 such that electricity is an instance variable and fluid is a
class variable instead, would this code still compile or which other lines would also need to be
changed and in what way?

Avatar on line 5 will no longer work if electricity was no longer static; it would
cause a compile-time error because we cannot reference instance variables using a static class
reference. But, this would still work on line 6 even if fluid is made static since an instance
variable can be used to reference a static class reference.

CS 61B, Spring 2020, Discussion 4: Objects 1



(c) Reverting our changes from part (b) and starting from the original code, will adding the fol-
lowing method to class Avatar cause any errors during compilation or execution? Why or
why not?
public static String getFluid() {

return fluid;
}

The method will cause a compile-time error because we can not reference an instance variable
(in this case, fluid) from inside a static context.

When the object is not specified (for example, using fluid instead of something like foo1.fluid)
in a field access or method call, Java will use this. by default (for example, this.fluid).
However, since the new method is static, this does not exist and therefore an error is thrown.

CS 61B, Spring 2020, Discussion 4: Objects 2



2 Reversing an Array
Given an array A, reverse its elements in place. Do not create any new arrays; this should be a
destructive method.
/** Destructively reverses A in place. */
public static void reverse(int[] A) {

for (int i = 0; i < A.length / 2; i++) {
int temp = A[A.length - i - 1];
A[A.length - i - 1] = A[i];
A[i] = temp;

}
}

Extra: Given a square 2D array B, reverse the elements along a given diagonal in place.
reverseDiagonal is destructive so you should modify B directly. A diagonal begins at
the leftmost column and continues up and to the right. An N x N array has exactly N diagonals.

For example, let the 2D array on the left be B. The value contained within diagonal = 0
is {1}. The values contained within diagonal = 1 are {2, 5}. The values contained within
diagonal = 2 are {3, 6, 9}. The values contained within diagonal = 3 are {4, 7, 10, 13}.

Below, the 2D array on the right has the values along diagonal = 2 reversed.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

=⇒

1 2 9 4
5 6 7 8
3 10 11 12

13 14 15 16

Assume that B contains at least one item (N ≥ 0) and that diagonal is an integer between 0 and
B.length - 1, inclusive.
/** Destructively reverses the items along the diagonal in B. */
public static void reverseDiagonal(int[][] B, int diagonal) {

for (int i = 0; i <= diagonal / 2; i++) {
int temp = B[diagonal - i][i];
B[diagonal - i][i] = B[i][diagonal - i];
B[i][diagonal - i] = temp;

}
}

CS 61B, Spring 2020, Discussion 4: Objects 3



3 Circular Buffer
A circular buffer is a data structure whose contents start at an arbitrary index and continue from
there, wrapping around to the beginning upon reaching the end of the buffer. In this case, we will
be using an array as our buffer.

Write a function that, when given a full circular array A whose contents start at index i, returns a
new array whose contents start at index 0 and maintain the same relative ordering with k appended
to the end. For example, if A has length 8, contains the values 0 through 7 inclusive, and starts at
index 6, then the array returned after calling overflow(A, 6, 8) is shown below on the right
(the first item in both buffers are bolded):

2 3 4 5 6 7 0 1 =⇒ 0 1 2 3 4 5 6 7 8

After calling overflow, A should remain unchanged. Use the arraycopy method, which is
defined below:
System.arraycopy(Object src, int srcPos, Object dest, int destPos, int length)

/** Returns a new array containing the elements of A starting at index 0

* with k appended to the end. The contents of the returned array should

* begin at index 0. The new array should have length = A.length + 1*/
public static int[] overflow(int[] A, int i, int k) {

int[] B = new int[A.length + 1];
System.arraycopy(A, i, B, 0, A.length - i);
System.arraycopy(A, 0, B, A.length - i, i);
B[A.length] = k;
return B;

}

CS 61B, Spring 2020, Discussion 4: Objects 4



4 Transposing a 2D Array
The transpose of a 2D array is a new 2D array whose rows are the columns of the original (and vice
versa). For example, let A be the 2D array below on the left. The transpose of A is the resulting 2D
array below on the right.

A =

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

=⇒

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

= transpose(A)

Given a square 2D array A, destructively transpose A.
/** Destructively transposes A. Assume that A is square. */
public static void transpose(int[][] A) {

for (int i = 0; i < A.length; i++) {
for (int j = i; j < A[i].length; j++) {

int temp = A[j][i];
A[j][i] = A[i][j];
A[i][j] = temp;

}
}

}

CS 61B, Spring 2020, Discussion 4: Objects 5


