
CS 61B Exam Prep 11: Sorting Spring 2020
1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms on the same input
list. The steps do not necessarily represent consecutive steps in the algorithm (that is, many steps
are missing), but they are in the correct sequence. For each of them, select the algorithm it illus-
trates from among the following choices: insertion sort, selection sort, mergesort, quicksort (first
element of sequence as pivot), and heapsort.

Input list:1430, 3292, 7684, 1338, 193, 595, 4243, 9002, 4393, 130, 1001

(a)

1430, 3292, 7684, 193, 1338, 595, 4243, 9002, 4393, 130, 1001

1430, 3292, 193, 1338, 7684, 595, 4243, 9002, 130, 1001, 4393

193, 1338, 1430, 3292, 7684, 130, 595, 1001, 4243, 4393, 9002

(b)

1338, 193, 595, 130, 1001, 1430, 3292, 7684, 4243, 9002, 4393

193, 595, 130, 1001, 1338, 1430, 3292, 7684, 4243, 9002, 4393

130, 193, 595, 1001, 1338, 1430, 3292, 4243, 9002, 4393, 7684

(c)

1338, 1430, 3292, 7684, 193, 595, 4243, 9002, 4393, 130, 1001

193, 1338, 1430, 3292, 7684, 595, 4243, 9002, 4393, 130, 1001

193, 595, 1338, 1430, 3292, 7684, 4243, 9002, 4393, 130, 1001

(d)

1430, 3292, 7684, 9002, 1001, 595, 4243, 1338, 4393, 130, 193

7684, 4393, 4243, 3292, 1001, 595, 193, 1338, 1430, 130, 9002

130, 4393, 4243, 3292, 1001, 595, 193, 1338, 1430, 7684, 9002

CS 61B, Spring 2020, Exam Prep 11: Sorting 1



2 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve discussed in class.
If the question is T/F and the statement is true, provide an explanation. If the statement is false,
provide a counterexample.

(a) [True/False] Quicksort has a worst case runtime of Θ(NlogN), whereN is the number of ele-
ments in the list that we’re sorting.

(b) We have a system running insertion sort and we find that it’s completing faster than expected.
What could we conclude about the input to the sorting algorithm?

(c) Give a 5 integer array such that it elicits the worst case running time for insertion sort.

(d) [True/False] Heapsort is stable.

(e) Give some reasons as to why someone would use mergesort over quicksort

(f) You will be given an answer bank, each item of which may be used multiple times. You may
not need to use every answer, and each statement may have more than one answer.

A. QuickSort (nonrandom, inplace using Hoare partitioning, and choose the leftmost item as the
pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N
indicating none of the above. All answers refer to the entire sorting process, not a single step of the
sorting process. For each of the problems below, assume that N indicates the number of elements
being sorted.

Bounded by Ω(NlogN)lower bound.

Has a worst case runtime that is asymptotically better than Quicksort’s worstcase runtime.

In the worst case, performs Θ(N) pairwise swaps of elements.

Never compares the same two elements twice.

Runs in best case Θ(logN)time for certain inputs

CS 61B, Spring 2020, Exam Prep 11: Sorting 2



3 Counting Inversions
Given an array of size N, find the number of inversions in O(NlogN) time. Hint: Use merge sort.

public static int countInversions (int[] arr, int left, int right) {
int count = 0;
int middle = ____________________;

if (left<right) {
count+=countInversions(____________________);
count+=countInversions(____________________);
count+=mergeAndCount(____________________);

}
return count;

}

public static int mergeAndCount(int[] arr, int left, int middle, int
right) {
int count = 0;
int[] leftArr = new int[____________________];
int[] rightArr = new int[____________________];
System.arraycopy(arr,________,leftArr,________,________);
System.arraycopy(arr,________,rightArr,________,________);

int leftPointer = 0;
int rightPointer = 0;
int mergePointer = left;
while (leftPointer < leftArr.length && rightPointer <

rightArr.length) {
if (____________________) {

________________________________________;
________________________________________;
________________________________________;
________________________________________;

} else {
________________________________________;
________________________________________;

}
}

//if uneven split
while (____________________) {

____________________;
____________________;
____________________;

}
while (____________________) {

____________________;
____________________;
____________________;

}
return __________;

}

CS 61B, Spring 2020, Exam Prep 11: Sorting 3



4 Sorted Runtimes
We want to sort an array of N distinct numbers in ascending order. Determine the best case and
worst case runtimes of the following sorts -

(a) Once the runs in merge sort are of size <= N/100, we perform bubble sort on them.

(b) We can only swap adjacent elements in selection sort.

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

(d) We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but
must have constant space complexity.

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

• There is exactly 1 inversion

• There are exactly (N2 −N)/2 inversions

CS 61B, Spring 2020, Exam Prep 11: Sorting 4


