
CS 61B Discussion 4: Exam Prep Spring 2020
1 Give em the ’Ol Switcheroo
For each function call in the main method, write out the x and y values of both foobar and baz
after executing that line. (Spring 2015, MT1)
public class Foo {

public int x, y;

public Foo (int x, int y) {
this.x = x;
this.y = y;

}

public static void switcheroo (Foo a, Foo b) {
Foo temp = a;
a = b;
b = temp;

}

public static void fliperoo (Foo a, Foo b) {
Foo temp = new Foo(a.x, a.y);
a.x = b.x;
a.y = b.y;
b.x = temp.x;
b.y = temp.y;

}

public static void swaperoo (Foo a, Foo b) {
Foo temp = a;
a.x = b.x;
a.y = b.y;
b.x = temp.x;
b.y = temp.y;

}

public static void main (String[] args) {
Foo foobar = new Foo(10, 20);
Foo baz = new Foo(30, 40);
switcheroo(foobar, baz); foobar.x: 10 foobar.y: 20 baz.x: 30 baz.y: 40
fliperoo(foobar, baz); foobar.x: 30 foobar.y: 40 baz.x: 10 baz.y: 20
swaperoo(foobar, baz); foobar.x: 10 foobar.y: 20 baz.x: 10 baz.y: 20

}
}

CS 61B, Spring 2020, Discussion 4: Exam Prep 1

2 Flatten
Write a method flatten that takes in a 2-D array x and returns a 1-D array that contains all of
the arrays in x concatenated together. (Summer 2016, MT1)

For example, flatten ({{1, 2, 3}, {}, {7, 8}}) should return {1, 2, 3, 7, 8}.
public static int[] flatten(int[][] x) {

int totalLength = 0;

for (int i = 0; i < x.length; i++) {
totalLength += x[i].length;

}

int[] a = new int[totalLength];
int aIndex = 0;

for (int i = 0; i < x.length; i++) {
for (int j = 0; j < x[i].length; j++) {

a[aIndex] = x[i][j];
aIndex++;

}
}

return a;
}

Here is an alternate solution that uses arraycopy.
public static int[] flatten(int[][] x) {

int totalLength = 0;

for (int i = 0; i < x.length; i++) {
totalLength += x[i].length;

}

int[] a = new int[totalLength];
int aIndex = 0;

for (int[] arr: x) {
System.arraycopy(arr, 0, a, aIndex, arr.length);
aIndex += arr.length;

}

return a;
}

}

CS 61B, Spring 2020, Discussion 4: Exam Prep 2

3 IntList to Array
For this problem we will implement a version of arraycopy that copies elements from an IntList
into an array of ints. As a reminder, here is the arraycopy method:
System.arraycopy(Object src, int sourcePos, Object dest, int destPos, int len)

System.arraycopy copies len elements from array src (starting at index source) to array
destArr (starting from index dest).

To simplify things, let’s restrict ourselves to using only int[], and assume that srcList and
destArr are not null. Additionally, assume that sourcePos, destPos, and len will not
cause an IndexOutOfBoundsException to be thrown.

For example, let IntList L be (1 -> 2 -> 3 -> 4 -> 5) and int[] arr be an empty array of length 3.
Calling arrayCopyFromIntList(L, 1, arr, 0, 3) will result in arr={2, 3, 4}.
/** Works just like System.arraycopy, except srcList is of type IntList. */
public static void arrayCopyFromIntList(IntList srcList, int sourcePos,

int[] destArr, int destPos, int len) {
for (int i = 0; i != sourcePos; i += 1;) {

srcList = srcList.tail;
}

for (int i = destPos ; i < destPos + len; i += 1) {
destArr[i] = srcList.head;
srcList = srcList.tail;

}
}

CS 61B, Spring 2020, Discussion 4: Exam Prep 3

4 Adding Long Numbers: IntList Adder
Here we’ll write code that interprets IntLists as numbers by thinking of them as a list of digits.
Then, we’ll write a method to add two such numbers. This is useful for adding numbers with
values much larger than what Java can represent using Integers.

For this question we will be representing the input and output numbers with the least significant
digit (LSD) on the left and the most significant digit (MSD) on the right, which will have the effect
of making them look backwards. For example, the number 12345 should be represented as an
IntList with the items (5 -> 4 -> 3 -> 2-> 1).

Here is an example of adding 321 to 99:

Let IntList x be (1 -> 2 -> 3) and IntList y be (9 -> 9 -> 0). Calling add(x, y) will yield an
IntList representing the sum (0 -> 2 -> 4), or 420.

Assume that you will not have to deal with negative numbers and that every element in the IntLists
is an integer in the range [0, 9] (i.e. numbers between 0 and 9, inclusive). To further simplify
things, assume that both x and y have the same length.
public IntList add(IntList x, IntList y) {

int carry = 0;
IntList sum = new IntList(-1, null);
IntList last = sum;

while (x != null && y != null) {
int digit = x.head + y.head;
digit += carry;
carry = 0;

if (digit > 9) {
digit = digit - 10;
carry = 1;

}

last.tail = new IntList(digit, null);
last = last.tail;
x = x.tail;
y = y.tail;

}

if (carry == 1) {
last.tail = new IntList(carry, null);

}

return sum.tail;
}

CS 61B, Spring 2020, Discussion 4: Exam Prep 4

