
CS 61B Discussion 5: Exam Prep Spring 2020
1 Playing with Puppers
Suppose we have the Dog and Corgi classes which are a defined below with a few methods but no
implementation shown. (modified from Spring ’16, MT1)

1 public class Dog {
2 public Dog(){ /* D1 */ }
3 public void bark(Dog d) { /* Method A */ }
4 }
5

6 public class Corgi extends Dog {
7 public Corgi(){ /* C1 */ }
8 public void bark(Corgi c) { /* Method B */ }
9 @Override

10 public void bark(Dog d) { /* Method C */ }
11 public void play(Dog d) { /* Method D */ }
12 public void play(Corgi c) { /* Method E */ }
13 }

For the following main method at each call to play or bark, circle the options corresponding to the
methods that will be executed at runtime. If there will be a compiler error or runtime error, circle
that instead.
public static void main(String[] args) {

Corgi c = new Corgi();
C1 D1
Dog d = new Corgi();
C1 D1
There is always an implicit call to the superclass’s constructor.

Dog d2 = new Dog();
D1
Corgi c2 = new Dog();
Compiler-Error
Corgi c3 = (Corgi) new Dog();
Runtime-Error D1
During compile time, we can cast an object along a class’s heirarchy with

no problem. At runtime, java is upset that the Dog instance "is not"
a Corgi. That is, a Dog does not extend from Corgi. However, the dog
is instantiated before java attempts to assign it.

d.play(d);
Compiler-Error
d.play(c);
Compiler-Error
d’s static type Dog does not have a play method.

c.play(d);
D
At compile time, we check c’s static type, Corgi, does have a play method

that takes in a Dog. At runtime, we look at c’s dynamic type, Corgi,

CS 61B, Spring 2020, Discussion 5: Exam Prep 1



for a play method. Here we see play is overloaded, so we pick the
method with the "more specific" parameters relative to our arguments,
which is method D.

c.play(c);
E
Same as previous.

c.bark(d);
C
c.bark(c);
B
d.bark(d);
C

We notice that bark is overloaded and overriden. As a reminder, dynamic method
selection applies to overriden methods. Method C overrides Method A, and

method B
overloads C. For c.bark(c), the compiler had bound caller c’s static type’s

bark to
argument c’s most specific static type, Corgi, thus binding method B.

d.bark(c);
C
d.bark((int) c);
Compiler-Error

During compile time, the compiler will complain that a Corgi "is not" an int.
You can only cast up or down the heirarchy.

c.bark((Corgi) d2);
Runtime-Error

During compile time, we check c’s static type, Corgi, for a bark method that
takes in a Corgi, which exists, so there is no compile time error. At
runtime, java is upset that d2 "is not" a Corgi. Note that the cast only
temporarily changes the static type for this SPECIFIC line.

((Corgi)d).bark(c);
B
((Dog) c).bark(c);
C
c.bark((Dog) c);
C

}

We encourage you to try inheritance problems here: link. Please post on piazza if you have ques-
tions!

CS 61B, Spring 2020, Discussion 5: Exam Prep 2

https://tinyurl.com/examprep4DogDemo


General flow for one argument methods, suppose we have a.call(b) [ST = Static type, DT =
dynamic type].

1. During compile time, java only cares about static types. First, check if a’s ST, or its super-
classes, has a method that takes in the ST of b.

(a) If not, check a’s superclasses for a method that takes in ST of b.

(b) If not, check if any of the methods take in supertype of ST of b, as we are looking for
b’s "is-a" relationships. Start from a’s ST methods and move up from its superclass.

(c) If still not, Compiler-Error!

2. Take a snapshot of the method found.

(a) The method signature that is choosen at runtime will try to exactly match with our
snapshot. The signature consists of the method name, and the number and type of its
paramaters.

3. During runtime, if call is an overriden method, then run a’s dynamic type’s call method.

4. Runtime errors can consist of downcasting (as seen in Corgi c3 = (Corgi) new Dog();),
but also many that are not related to inheritance (NullPointerException, IndexOutOfBound-
Exception, etc).

Notes:

- If a method is overloaded and overriden, as bark is above, the compiler will bind the method first.

- Dynamic method selection has no interaction with assignment.

CS 61B, Spring 2020, Discussion 5: Exam Prep 3



2 Dynamic Method Selection
Modify the code below so that the max method of DMSList works properly. Assume all numbers
inserted into DMSList are positive, and we only insert between sentinel and sentinel.tail.
You may not change anything in the given code. You may only fill in blanks. You may not need
all blanks. (Adapted from Spring ’17, MT1)

1 public class DMSList {
2 private IntList sentinel;
3 public DMSList() {
4 sentinel = new IntList(-1000, new LastIntList());
5 }
6 public class IntList {
7 public int head;
8 public IntList tail;
9 public IntList(int h, IntList t) {

10 head = h;
11 tail = t;
12 }
13 public int max() {
14 return Math.max(head, tail.max());
15 }
16 }
17 public class LastIntList extends IntList {
18 public LastIntList() {
19 super(0, null);
20 }
21 @Override
22 public int max() {
23 return 0;
24 }
25 }
26 /* Returns 0 if list is empty. Otherwise, returns the max element. */
27 public int max() {
28 return sentinel.tail.max();
29 }
30 }

CS 61B, Spring 2020, Discussion 5: Exam Prep 4



3 Flirbocon
Consider the declarations below. Assume that Falcon extends Bird. (Spring ’17, MT1)
Bird bird = new Falcon();
Falcon falcon = (Falcon) bird;

Consider the following possible features for the Bird and Falcon classes. Assume that all
methods are instance methods (not static!). The notation Bird::gulgate(Bird) specifies a
method called gulgate with parameter of type Bird from the Bird class.

F1. The Bird::gulgate(Bird) method exists.
F2. The Bird::gulgate(Falcon) method exists.
F3. The Falcon::gulgate(Bird) method exists.
F4. The Falcon::gulgate(Falcon) method exists.

(a) Suppose we make a call to bird.gulgate(bird);

Which features are sufficient ALONE for this call to compile? For example if feature F3 or
feature F4 alone will allow this call to compile, select F3 and F4.

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Bird::gulgate(Bird) method.
For example, if having features F2 and F4 only (and not F1 and F3) would result in
Bird::gulgate(Bird) being executed, only select F2 and F4.

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.

� F1 � F2 � F3 � F4 � Impossible

(b) Suppose we make a call to falcon.gulgate(falcon);

Which features are sufficient ALONE for this call to compile?

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Bird::gulgate(Bird) method.

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Bird::gulgate(Falcon) method.

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.

� F1 � F2 � F3 � F4 � Impossible

Select a set of features such that this call executes the Falcon::gulgate(Falcon)method.

� F1 � F2 � F3 � F4 � Impossible

CS 61B, Spring 2020, Discussion 5: Exam Prep 5


	Playing with Puppers
	Dynamic Method Selection
	Flirbocon

