
CS 61B Small Group Tutoring
Spring 2020 Section 12: Sorting Worksheet 12 Solutions

1 Step by Step Sorts

Show the steps taken by each sort on the following unordered list of integers (duplicate items are denoted
with letters):

2, 1, 8, 4A, 6, 7, 9, 4B

1. Insertion Sort

2 | 1 8 4A 6 7 9 4B
1 2 | 8 4A 6 7 9 4B
1 2 8 | 4A 6 7 9 4B
1 2 4A 8 | 6 7 9 4B
1 2 4A 6 8 | 7 9 4B
1 2 4A 6 7 8 | 9 4B
1 2 4A 6 7 8 9 | 4B
1 2 4A 4B 6 7 8 9 |

2. Selection Sort

1 | 2 8 4A 6 7 9 4B
1 2 | 8 4A 6 7 9 4B
1 2 4A | 8 6 7 9 4B
1 2 4A 4B | 6 7 9 8
1 2 4A 4B 6 | 7 9 8
1 2 4A 4B 6 7 | 9 8
1 2 4A 4B 6 7 8 | 9
1 2 4A 4B 6 7 8 9 |

3. Merge Sort

2 1 8 4A 6 7 9 4B
2 1 8 4A 6 7 9 4B
2 1 8 4A 6 7 9 4B
2 1 8 4A 6 7 9 4B
1 2 4A 8 6 7 4B 9
1 2 4A 8 4B 6 7 9
1 2 4A 4B 6 7 8 9
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4. Heapsort Note: if both children are equal, sink to the left.

9 6 8 4A 1 7 2 4B <-- heapified!
8 6 7 4A 1 4B 2 | 9
7 6 4B 4A 1 2 | 8 9
6 4A 4B 2 1 | 7 8 9
4A 2 4B 1 | 6 7 8 9
4B 2 1 | 4A 6 7 8 9
2 1 | 4B 4A 6 7 8 9
1 | 2 4B 4A 6 7 8 9
| 1 2 4B 4A 6 7 8 9

2 Sorting Runtimes

Fill out the best-case and worst-case runtimes for these sorts as well as whether they are stable or not in the
table below.

Best-Case Worst-Case Stability
Selection Sort Θ

(
N2

)
Θ
(
N2

)
Depends

Insertion Sort Θ(N) Θ
(
N2

)
Yes

Heapsort Θ(N) Θ(NlogN) No

Mergesort Θ(NlogN) Θ(NlogN) Yes

Quicksort Θ(NlogN) Θ
(
N2

)
Depends

Notes:
- Insertion Sort is good for small and nearly sorted arrays
- Heapsort’s best case is achieved when all the items are duplicates
- Mergesort is good for sorting objects
- In practice, quicksort is the fastest sort.

3 You Choose

1. We have a system running insertion sort and we find that its completing faster than expected. What
could we conclude about the input to the sorting algorithm?

Solution: The input is small or the array is nearly sorted. Note that insertion sort has a best case
runtime of θ(N), which is when the array is already sorted.

2. Give a 5 element array such that it elicits the worst case runtime for insertion sort.

Solution: A simple example is: 5 4 3 2 1. Any 5 integer array in descending order would work.
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3. Give some reasons why someone would use merge sort over quicksort.

Solution: Some possible answers: mergesort has θ(NlogN) worst case runtime versus quicksorts
θ(N2). Mergesort is stable, whereas quicksort typically isnt. Mergesort can be highly parallelized
because as we saw in the first problem the left and right sides do not interact until the end. Mergesort
is also preferred for sorting a linked list.

4. Which sorts never compare the same two elements twice?

Solution: Quicksort, Mergesort, Insertion
- Quicksort: elements are compared with the pivot we pick
- Mergesort: once we compare 2 elements when we are merging they placed into a sorted lists
- Insertion: 2 sorted elements are never compared with each other - when we are inserting an element,
we only compare it to sorted elements

4 Name That Sort

Below you will find some intermediate steps in performing various sorting algorithms on the same input
list. The steps do not necessarily represent consecutive steps in the algorithm, but they are in the correct
sequence. Identify the algorithm for each problem:
Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1. 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000
1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392
192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

Solution: Mergesort. The left and right sides do not interact until the end.

2. 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 9001, 4392, 7683

Solution: Quicksort. We chose the first item, 1429, as the pivot, which breaks up the array into three
sections: < 1429, = 1429, > 1429

3. 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000
192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

Solution: Insertion Sort. Insertion sort starts from the left and move elements forward as much as
possible. Since these are the first few iterations, the right side is unchanged.

4. 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192
7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001
129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

Solution: Heapsort. The first line is in the process of heapifying the list into a maxheap. After we
created the max heap, we continuously remove the max and place it at the end.
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