
CS 61B Small Group Tutoring
Spring 2020 Section 1: Pointers [Solutions] Worksheet 3

1 Java Practice

1. Write a function that sums up all the digits in an integer iteratively. For example, sumDigits(31415)
should return 3+1+4+1+5 = 14.

public static int sumDigits (int x) {
}

Solution:

public static int sumDigits(int x) {
int total = 0;
for (int num = x; num > 0; num /= 10) {

total += num % 10;
}
return total;

}

Note: The ”while” loop version may be more familiar for students, but going over the ”/=” notation
in the for loop can be good practice!

Alternate Solution:

public static int sumDigits(int x) {
int total = 0;
while (x > 0) {

total += x % 10;
x /= 10;

}
return total;

}

CS 61B, Spring 2020, Worksheet 3 1

2. Write a function that sums up all the digits in an integer recursively.

public static int sumDigits (int x) {
if () {

;

}
return + sumDigits();

}

Solution:

public static int sumDigits(int x) {
if (x <= 0) {

return 0;
}
return x % 10 + sumDigits(x/10);

}

2 Pointer Practice

Draw the resulting box and pointer diagram for the L1 Singly Linked IntList after the following code is
executed:

1. IntLists
IntList L1 = IntList.list(2,4,6,8);

IntList L2 = IntList.list(1,3,5,7);

L1.tail.tail.head = 5;

L2.tail.tail.tail = L1;

L1.tail.tail.tail = L2;

Solution:

CS 61B, Spring 2020, Worksheet 3 2

2. IntLists (Optional)
IntList L1 = IntList.list(7,15,22,31);

IntList L2 = L1.tail.tail;

L2.tail.head = 13;

L1.tail.tail.tail = L2;

IntList L3 = IntList.list(50);

L2.tail.tail = L3;

Solution:

CS 61B, Spring 2020, Worksheet 3 3

3 Skip Me

Write a function that takes in an IntList L, which must contain at least one element, and returns an IntList
with every odd indexed element removed, starting at index 0. For example, if L = {1,2,3,4}, the function
should return an IntList with elements {1,3}.

1. Nondestructive: input IntList, L, should not be modified

public static IntList skipNondestructive (IntList L) {
IntList pointer = ;

IntList retPtr = ;

IntList retHead = ;

while (&&) {
retPtr.tail = ;

pointer = ;

retPtr = ;

}
return ;

}

Solution:

public static IntList skipNondestructive (IntList L) {
IntList pointer = L;
IntList retPtr = new IntList(pointer.head);
IntList retHead = retPtr;
while (pointer.tail != null && pointer.tail.tail != null) {

retPtr.tail = new IntList(pointer.tail.tail.head);
pointer = pointer.tail.tail;
retPtr = retPtr.tail;

}
return retHead;

}

The first three lines initiate IntList pointers: pointer is used to walk through the given list L
and retPtr (which stands for return pointer) points to a new list that we are returning. Since
we will be appending to the end of retPtr, retPtr will always be pointing to the end of the
returned list so we use retHead to maintain a pointer to the front.
Within the while loop, when appending to the returned list, we must initiate a new IntList
object at the tail each time to ensure that the solution is nondestructive (try what happens if
we don’t!). We then update the pointers by moving pointer forward twice and retPtr forward
once (this does the skipping action). Notice that we make a call for pointer.tail.tail.head
within the while loop so we must ensure that pointer.tail is not null (so that it has a tail
attribute) and pointer.tail.tail is not null (so that it has a head attribute).

CS 61B, Spring 2020, Worksheet 3 4

2. Destructive: input IntList, L, should be modified

public static void skipDestructive (IntList L) {
if () {

;

}
L.tail = ;

skipDestructive();

}

Solution:

public static void skipDestructive (IntList L) {
if (L == null || L.tail == null) {

return;
}
L.tail = L.tail.tail;
skipDestructive(L.tail);

}

In the destructive case, we must modify L so no new IntList objects or pointers should be
created. The key idea is to modify the tail pointers of every other element in the list to point to
the element after its original tail (this is achieved in line 5). We can then recursively continue
this process for the remainder of L.

CS 61B, Spring 2020, Worksheet 3 5

	Java Practice
	Pointer Practice
	Skip Me

