
CS 61B Small Group Tutoring
Spring 2020 Section 4: Arrays [Solution] Worksheet 4

1 Read Me

Describe what each of the following methods does. You may assume that values contains at least one
element.

private static boolean method1 (int[] values) {
int k = 0;
while (k < values.length - 1) {

if (values[k] > values[k+1]) {
return false;

}
k = k + 1;

}
return true;

}

Solution: method1 returns true if values is non-decreasing, i.e. if each value in values is larger than
or equal to the previous element.

private static void method2 (int[] values) {
int k = 0;
while (k < values.length / 2) {

int temp = values[k];
values[k] = values[values.length - 1 - k];
values[values.length - 1 - k] = temp;
k = k + 1;

}
}

Solution: method2 reverses values in place. Note that method2 has no return value and instead mutates
values.

CS 61B, Spring 2020, Worksheet 4 1



2 CopyCat

For the following class, write a non-static method called cloneCat that allows the current Cat to clone itself.
(Hint: This means incrementing the clones field and returning a clone of the current Cat object using the
provided constructor.)

class Cat {
public static int clones = 5;

String name;

public Cat() {
name = "Catherine";

}

public Cat(Cat c) {
name = c.name;

}

public Cat cloneCat() {
clones++;

return new Cat(this);

}
}

Could you call cloneCat from an instance object? How about from a class?
Solution: We can create an instance object and call the method.

Cat c = new Cat();

c.cloneCat();

No, we cannot call the method from a class. The method is non-static and attempting to run the code
would yield a compile-time error.

What would happen if we added the static keyword to cloneCat without modifying the body of the method?
If we changed the method body as well, how could we call cloneCat from the class? Would we be able to
call cloneCat from an instance object?

Solution:

If we added the static keyword, the method would not make sense. There would be a compile-time error
from referencing a non-static variable from a static context. This is because the keyword this refers to the
instance of Cat that calls cloneCat. Since we are making cloneCat static, and therefore making it indepen-
dent of the instances of cloneCat, this no longer makes any sense.

CS 61B, Spring 2020, Worksheet 4 2



However, if the method body was changed so that it did work, we would it call it with:

Cat.cloneCat();

Yes, it is okay to call static methods from an instance object.

CS 61B, Spring 2020, Worksheet 4 3



3 Flatten

Write a method flatten that takes in a 2-D int array x and returns a 1-D int array that contains all of the arrays
in x concatenated together. For example, flatten({{1, 3, 7}, {}, {9}}) should return {1, 3, 7, 9}.

Solution:

public static int[] flatten(int[][] x) {
//newSize will hold the length of the flattened list
int newSize = 0;

for (int i = 0; i < x.length; i+=1) {
//calculating the length of flattened list
newSize += x[i].length;

}
int[] toReturn = new int[newSize];

//toReturnIndex will be the index used to access the flattened list
int toReturnIndex = 0;

for (int i = 0; i < x.length; i+=1) {
for (int j = 0; j < x[i].length; j+=1) {

/* index into the flattened list using toReturnIndex
and store the element from the original
2D-array at position (i, j) */

toReturn[toReturnIndex] = x[i][j];

/* increment the toReturnIndex for next time
(next position in the flattened array) */

toReturnIndex += 1;
}

}
return toReturn;

}

CS 61B, Spring 2020, Worksheet 4 4


	Read Me
	CopyCat
	Flatten

