
CS 61B Small Group Tutoring
Spring 2020 Section 4: Comparables, Exceptions, MT1 Worksheet 6

1 String Comparisons

Suppose you are a freelance writer, and one of your clients asks you to write them a short thought piece about
unusual applications of computer science. They have quite generously offered to pay you by the word, with
the limitation that you may not exceed 10 pages. Obviously, you would now like to find the shortest words
in the English language so that you can use as many of them as possible. To this end, you decide to write a
little Java.

public interface StringComparator {
/** Returns a negative number if s1 is ’less than’ s2, 0 if ’equal,’

* and a positive number otherwise. Null is considered less than

* any String. If both inputs are null, return 0. */
public int compare(String s1, String s2);

}

1. Write a new class LengthComparator that implements the StringComparator interface
provided above. The LengthComparator should compare strings based on their lengths.

2. Now suppose your client says that they will also pay you more for using words that occur later in
the dictionary. Complete DoubleComparator to order strings based on reverse alphabetical order
if they are the same length. Otherwise, the method will compare based on length. Hint: Use the
LengthComparator class and Java Strings’ compareTo method.

public class DoubleComparator implements StringComparator {
public int compare(String s1, String s2) {

__;
if (______________________________) {

______________________________;
} else {

______________________________;
}

}
}

CS 61B, Spring 2020, Worksheet 6 1

2 Exceptions Logged

One common software engineering strategy is to create log files that can be manually examined if something
goes wrong. In the code below, the writeToLog method writes the given argument to some log.

public class LogFile {
public static void printTenth(int[] a) {

try {
writeToLog(a[10]);
if (a[10] == 11) {

throw(new Exception("eleven"));
}

} catch (IndexOutOfBoundsException e) {
writeToLog("No tenth item!");
throw(e);

} catch (Exception e) {
writeToLog("The tenth item was an eleven!");

}
writeToLog("done");

}
public static void main(String[] args) {

printTenth(new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
printTenth(new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11});
printTenth(new int[]{0, 1, 2, 3, 4});
printTenth(new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});

}
}

What does the method printTenth do? What are the contents of the log file after the code is executed?

CS 61B, Spring 2020, Worksheet 6 2

3 Access Modifiers (MT1 Review)

1. Complete the table below for where methods/variables with different access modifiers can be used.

Same Class Same Package Subclass Other Package
public Yes

protected Yes
No modifier (Package protected) Yes

private Yes

2. Choosing the the correct access modifiers for your methods and variables is an important part of cod-
ing in Java. When should you use public? When should you use private?

3. Now consider the following contrived example to see how access modifiers behave in practice.
Assume all of the classes exist in the same package. For each of the lines marked with a comment
determine whether the line will or will not work.

public class Beverage {
private String drinkName;
private int size;
public class DrinkPromoter {

public void promote() {
System.out.println(drinkName + " is the best!"); // 1

}
}

}
public class Horchata extends Beverage {

public int size;
public String getDrinkName() {

return drinkName; // 2
}
public int getSize() {

return size;
}

}
public class Drinks {

public static void main(String[] args) {
Beverage theBest = new Horchata();
Horchata soGood = (Horchata) theBest;
System.out.println(theBest.drinkName); // 3
System.out.println(theBest.size); // 4
System.out.println(soGood.size); // 5

}
}

CS 61B, Spring 2020, Worksheet 6 3

4 Dogs Woof

class Dog {
void bark(Dog d) {

System.out.println("bark");
}

}

class Poodle extends Dog {
void bark(Dog d) {

System.out.println("woof");
}

void bark(Poodle p) {
System.out.println("yap");

}

void play(Dog d) {
System.out.println("no");

}

void play(Poodle p) {
System.out.println("bowwow");

}

public static void main(String[] args) {
Dog dan = new Poodle();
Poodle pym = new Poodle();

1. dan.play(dan)

2. dan.play(pym)

3. pym.play(dan)

4. pym.play(pym)

5. pym.bark(dan)

6. pym.bark(pym)

7. dan.bark(dan)

8. dan.bark(pym)

CS 61B, Spring 2020, Worksheet 6 4

5 Pizza Iterator (MT1 Review)

Artichoke’s is overwhelmed by the number of hungry students in line at 12 AM. To make things more
efficient, the owner has asked you to build a custom iterator that will aggregate all orders and print out the
number of slices that should made for each kind of pizza.

The static menu array declared inside PizzaIterator contains the three types of pizza offered that night.

static String[] menu = {"Artichoke", "Margherita", "Meatball"};

The input array passed into the constructor contains the list of orders.

int [] orders = { 0 , 2 , 1 , 0 , 1 , 0 };

Each order is represented by an integer that corresponds to the pizza’s index in the menu array. For example,
0 represents an order of Artichoke pizza.

Fill in the code for MenuIterator, an iterator that takes in an int[] array representing orders at the
restaurant and iterates over the aggregated results.

Given the input above, calls to next() would eventually return ”Artichoke 3”,”Margherita 2”, ”Meatball
1”. Make sure your iterator adheres to standard iterator rules.

public class MenuIterator implements Iterator {
private static String[] menu = {"Artichoke", "Margherita", "Meatball"};
private int[] order_counts = new int[3];
private int index;

public MenuIterator(Integer[] orders){

}

public boolean hasNext() {

}

public String next() {
//Should return a string in the format "Artichoke 3".

}
}

CS 61B, Spring 2020, Worksheet 6 5

6 IntSkip (MT1 Review)

Write a method intSkip that takes in an IntList L and changes every IntList’s tail to point to an IntList n
steps away from it, where n is the head attribute (the number stored inside) of each IntList.

Traverse starting from the first IntList (given by the pointer L) to the last IntList. If there is no valid IntList
at n steps away from the current one, then make its tail the last IntList in L. At the last IntList, do not make
any changes since the tail is null.

public static void intSkip(IntList L) {
IntList curr = ____________________________________;
IntList next;
while (__) {

next = __;
int count = _____________________________________;
_________________ = _____________________________;
while (___) {

count += ______________________________________;
_________________ = _____________________________;

}
curr.tail = ___;
curr = __;

}
}

Example:

IntList nums = IntList.list(1, 2, 2, 3, 1, 1, 1, 1, 1)
intSkip(nums)

nums:

1 -> 2 -> 3 -> 1 -> 1 -> 1

CS 61B, Spring 2020, Worksheet 6 6

7 Supersize Me (MT1 Review)

Suppose we have the following class:

public class Restaurant {
public String name;
public String style;
public Restaurant(String name, String style) {

this.name = name;
this.style = style;

}
public void order(String food) {

System.out.println("One " + food + " coming right up!");
}

}

Implement the class McDonalds such that it has the following specifications:

1. Is a subclass of the the Restaurant class.

2. Has a one argument constructor that takes in the location of the restaurant and saves it.

3. All instances should have the name ”McDonalds” and style ”Fast Food”.

4. Each instance has its own franchise number. Franchise numbers start at 1 and increase by 1.

5. Has an order method that uses Restaurant’s order method but always prints out ”Would you like fries with
that?” at the end as well.

Do not hide fields.

CS 61B, Spring 2020, Worksheet 6 7

	String Comparisons
	Exceptions Logged
	Access Modifiers (MT1 Review)
	Dogs Woof
	Pizza Iterator (MT1 Review)
	IntSkip (MT1 Review)
	Supersize Me (MT1 Review)

