CS 61B Small Group Tutoring
Spring 2020
Section 5: Complexity, Number Representation
Worksheet 7

1 List' em all!

List all the asymptotic runtimes from quickest to slowest.
$\theta\left(n^{2}\right), \theta\left(n^{0.5}\right), \theta(\log n), \theta\left(3^{n}\right), \theta(c), \theta\left(n^{n!}\right) \theta(n), \theta(n \log n), \theta(n!), \theta\left(n^{n}\right), \theta\left(2^{n}\right)$

2 What's that runtime?

For each of the methods below, please specify the runtime in $\operatorname{BigO}, \operatorname{Big} \Theta$ or $\operatorname{Big} \Omega$ Notation. Please give the tightest bound possible.

```
private static void f(int n) {
    for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
                            linear(n); // runs in linear time with respect to input
            }
    }
}
private static void g(int n) {
    if (n < 1) return;
    for(int i = 0; i < n; i++) {
            linear(100);
    }
    g(n/2);
    g(n/2);
}
private static void h(int n) {
    Random generator = new Random();
    for(int i = 0; i < n; i++) {
            if(generator.nextBoolean()) {
            /* nextBoolean returns true with
                probability .5. */
            break;
            }
    }
}
```

```
private static void i(int n) {
    if (n < 1) return;
    for(int i = 0; i < n; i++) {
            System.out.println("Yow!");
        }
        i((999 * n) / 1000);
    }
```

3 How fast?
Given an IntList of length N, provide the runtime bound for each operation. Recall that IntList is the naive linked list implementation from class.

Operations \quad Runtime
size()
get(int index)
addFirst(E e)
$\quad \operatorname{addLast(E~e)~}$
$\quad \operatorname{addBefore(E~e,~Node~n)~}$
remove(int index)
remove(Node n)
reverse()

4 Sum 'em Up

1. Define a function, sumTo, that takes a sorted int[] array and an int x and returns true if two numbers in the array sum to x and false otherwise. For example, if given the following input: $[1,2,4,7,8,10]$ and $x=12$, the function should return true.
2. Provide the tightest possible runtime bound on your solution.

5 Number Representation

Convert the following 4-bit numbers from signed integers to binary, and from binary to signed integers.
Decimal: 7 Binary: \qquad

Decimal: -5 Binary: \qquad

Decimal: _-_ Binary: 1000

Decimal: 3+7 Binary: \qquad

Now what is the decimal representation of this binary number? \qquad

Now for the questions below, consider that we are no longer working with 4-bit numbers, but rather 64 bit numbers.

Decimal: $1 \ll 2$ Binary: \qquad

What is the decimal representation of this? \qquad

Decimal: $10 \gg 2$ Binary: \qquad

What is the decimal representation of this? \qquad

Given a number x , how do we determine if it's even or odd using bit and boolean operators?

How do we determine whether x is a power of 2 ?

What is a number that can be represented as a 64 bit signed binary number but its absolute value cannot? (x can be represented but $|x|$ cannot)

