
CS 61B Small Group Tutoring
Spring 2020 Section 6: Sequences Worksheet 8

1 When am I Useful Senpai?

Based on the description, choose the data structure which would best suit our purposes. Choose from:
A - arrays, B - linkedlists, C - stacks, D - queues (excluding dequeue’s cause they’re too OP).

1. Keeping track of which customer in a line came first.

2. We will expect many inserts and deletes on some dataset, but not too many searches and lookups.

3. We gather a lot of data of a fixed length that will remain relatively unchanged overtime, but we ac-
cess its contents very frequently.

4. Maintaining a history of the last actions on Word in case I need to undo something.

CS 61B, Spring 2020, Worksheet 8 1

2 Reverse Me

Assume that we have a MyIntQueue class with API :

boolean isEmpty() //returns true if the queue is empty
void enqueue(int item) //adds item to the back of the queue
int dequeue() //removes the item at the front of the queue
int peek() //returns but doesn’t remove the item at the front of the queue
int size() //returns the size of the queue

We also have a Stack API as follows:

boolean isEmpty() //returns true if the stack is empty
void push(int item) //adds item to the top of the stack
int pop() //removes the item at the top of the stack
int peek() //returns but doesn’t remove the item at the top of the stack
int size() //returns the size of the stack

Fill in the method below that takes in a MyIntQueue q, and reverses its elements using a Stack.

private static void reverse(MyIntQueue q) {
Stack s = new Stack();
while (_________________________) {

}
while (_________________________) {

}
}

CS 61B, Spring 2020, Worksheet 8 2

3 Pseudo Stack

Implement a stack’s pop and push methods using two Queues. We have the same MyIntQueue API as
in the previous question.

public class MyIntStack {
MyIntQueue q1 = new MyIntQueue();
MyIntQueue q2 = new MyIntQueue();

public boolean isEmpty() {
//Implementation not shown

}
public int size() {

//Implementation not shown
}
public void push(int item) {

}

public int pop() {

}

}

CS 61B, Spring 2020, Worksheet 8 3

4 A Balancing Act

Given a string str, containing just the characters (,), {, }, [, and], implement a method hasValidParens
which determines if the string is valid.

The brackets must close in the correct order so ”()”, ”(){}”, and ”[()]” are all valid, but ”(”, ”({)}”,
and ”[(” are not.

You may refer to the Stack API from problem 2 (but apply for chars) and use the getRightParen
method provided below.

private static boolean hasValidParens(String str) {
Stack s = new Stack();
for (int i = 0; i < str.length(); i++) {

char c = str.charAt(i);
if (__) {

____________________;
} else {

if (_______________________) {
____________________;

}
if (c != __________________) {

____________________;
}

}
}
____________________;

}

/**
The method getRightParen takes in the left parenthesis
and returns the corresponding right parenthesis.

**/
private static char getRightParen(char leftParen) {

if (leftParen == ’(’) {
return ’)’;

} else if (leftParen == ’{’) {
return ’}’;

} else if (leftParen == ’[’) {
return ’[’;

} else {
//not one of the valid parenthesis characters
throw new IllegalArgumentException();

}
}

CS 61B, Spring 2020, Worksheet 8 4

	When am I Useful Senpai?
	Reverse Me
	Pseudo Stack
	A Balancing Act

