
CS 61B Small Group Tutoring
Spring 2020 Section 7: Trees Worksheet 9

1 Tree-versal

6

4

2

1

5

9

8

7

a) What is the pre-order traversal of the tree?

b) What is the post-order traversal of the tree?

c) What is the in-order traversal of the tree?

d) What is the breadth-first traversal of the tree?

CS 61B, Spring 2020, Worksheet 9 1

2 Runtime Questions

Provide the best case and worst case runtimes in theta notation in terms of N, and a brief justification for the
following operations on a binary search tree. Assume N to be the number of nodes in the tree. Additionally,
each node correctly maintains the size of the subtree rooted at it. [Taken from Final Summer 2016]

boolean contains(T o); // Returns true if the object is in the tree

Best: Θ() Justification:

Worst: Θ() Justification:

void insert(T o); // Inserts the given object.

Best: Θ() Justification:

Worst: Θ() Justification:

T getElement(int i); // Returns the ith smallest object in the tree.

Best: Θ() Justification:

Worst: Θ() Justification:

3 Pruning Trees

Assume we have some binary search tree, and we want to prune it so that all values in the tree are between
L and R, inclusive. Fill out the method below that takes in a BST, as well as L and R, and returns the pruned
tree. Note that the root of the original tree might not be between L and R, so make sure you return the root
of the new pruned tree.

class BST {
int label;
BST left; // null if no left child
BST right; // null if no right child

}

public BST pruneBST(BST root, int L, int R) {
if (_______________) {

return ________;
} else if (____________________) {

return pruneBST(____________, _____, _____);
} else if (____________________) {

return pruneBST(____________, _____, _____);
}
____________ = pruneBST(____________, _____, _____);
____________ = pruneBST(____________, _____, _____);
return _______;

}

CS 61B, Spring 2020, Worksheet 9 2

4 Game Trees

Minimax is an algorithm that allows a computer to calculate the best move to make in a game, assuming the
opponent plays optimally. At the bottom of the game tree are integer scores, where a higher score indicates a
more favorable outcome for the player of interest (who wants to win). Game trees could grow exponentially
large in size if the algorithm were to consider the eventual outcome of every possible move that could be
made. Thus, in addition to setting a depth limit, to simplify computation, we employ alpha-beta pruning.

Here’s how it works. As the computer searches through the game tree via a depth-first traversal, it passes as
arguments to each recursive call an alpha (α) and beta (β) value. α is the highest value found so far by a
maximizing node along the path from root to leaf. β is the lowest value found so far by a minimizing node
along the path from root to leaf. Initially, α is set to negative infinity and β set to positive infinity.

At a maximizing node, we update its value from each branch and then ask if the current value is greater
than β . If so, we stop searching the other branches of this maximizing node (in other words, prune the other
branches) and move back up in the tree. Since the parent of the current node is a minimizer, the parent
would choose the β value instead of any further updates to the maximizer node, as those updates would be
even greater and therefore ignored.

Similarly, whenever we are at a minimizing node, we look at its value and ask if the value is smaller than
α . If so, we stop searching the other branches of this minimizing node (prune them) and move back up in
the tree. Since the parent of the current node is a maximizer, the parent would choose the α value instead of
any further updates to the minimizer node, as those updates would be even smaller and therefore ignored.

CS 61B, Spring 2020, Worksheet 9 3

Consider the game tree below. The upside down triangles represent minimizer nodes and the normal trian-
gles represent maximizer nodes.

1. Fill out the values in each maximizer and minimizer node for the above game tree after applying the
Minimax algorithm to it.

2. Cross out (with an X) all branches that would be pruned by a Minimax implementation that utilizes
alpha-beta pruning.

3. According to the Minimax algorithm, which move should we make for the above game?

4. Minimax assumes that the opponent is playing optimally as well. Is this always a good idea? Consider
the case where we are playing a 3-year old who is not familiar with the game. Would it be possible to
use this to our advantage and win in less moves?

CS 61B, Spring 2020, Worksheet 9 4

	Tree-versal
	Runtime Questions
	Pruning Trees
	Game Trees

