
CS61B Lecture #12: Additional OOP Details,
Exceptions

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 1



Parent Constructors

• In lecture notes #5, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

• In particular, this means that Java gives the constructor of a class
the first shot at each new object.

• When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

• In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child’s constructors.

• You can call the parent’s constructor yourself explicitly.

class Figure { class Rectangle extends Figure {

public Figure(int sides) { public Rectangle() {

... super(4);

}... }...

} }

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 2



Default Constructors

• By default, Java calls the “default” (parameterless) constructor if
there is no explicit constructor called.

/* This... */ /* Is equivalent to... */

class Thingy extends Rectangle { class Thingy extends Rectangle {

public Thingy() { public Thingy() {

setThingsUp(); super();

} setThingsUp();

} }

}

• And it creates a default constructor for a class if no other con-
structor is defined for the class.

/* This... */ /* Is equivalent to... */ /* And thus to... */

class Crate { class Crate { class Crate {

} public Crate() { public Crate() {

} super();

} }

}

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 3



What Happens Here?

class Figure { class Rectangle extends Figure {

public Figure(int sides) { }

...

}

}

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 4



What Happens Here?

class Figure { class Rectangle extends Figure {

public Figure(int sides) { }

...

}

}

Answer: Compiler error. Rectangle has an implicit constructor that
tries to call the default construvtor in Figure, but there isn’t one.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 5



Using an Overridden Method

• Suppose that you wish to add to the action defined by a superclass’s
method, rather than to completely override it.

• The overriding method can refer to overridden methods by using
the special prefix super.

• For example, you have a class with expensive functions, and you’d
like a memoizing version of the class.

class ComputeHard {

int cogitate(String x, int y) { ... }

}

class ComputeLazily extends ComputeHard {

int cogitate(String x, int y) {

if (don’t already have answer for this x and y) {

int result = super.cogitate(x, y); // <<< Calls overridden function

memoize (save) result;
return result;

}

return memoized result;
}

}

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 6



Trick: Delegation and Wrappers

• Not always appropriate to use inheritance to extend something.

• Homework gives example of a TrReader, which contains another
Reader, to which it delegates the task of actually going out and
reading characters.

• Another example: a class that instruments objects:

interface Storage {

void put(Object x);

Object get();

}

class Monitor implements Storage {

int gets, puts;

private Storage store;

Monitor(Storage x) { store = x; gets = puts = 0; }

public void put(Object x) { puts += 1; store.put(x); }

public Object get() { gets += 1; return store.get(); }

}

// ORIGINAL

Storage S = something;
f(S);

// INSTRUMENTED

Monitor S = new Monitor(something);
f(S);

System.out.println(S.gets + " gets");

Monitor is called a wrapper class.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 7



What to do About Errors?

• Large amount of any production program devoted to detecting and
responding to errors.

• Some errors are external (bad input, network failures); others are
internal errors in programs.

• When method has stated precondition, it’s the client’s job to comply.

• Still, it’s nice to detect and report client’s errors.

• In Java, we throw exception objects, typically:

throw new SomeException (optional description);

• Exceptions are objects. By convention, they are given two construc-
tors: one with no arguments, and one with a descriptive string argu-
ment (which the exception stores).

• Java system throws some exceptions implicitly, as when you deref-
erence a null pointer, or exceed an array bound.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 8



Catching Exceptions

• A throw causes each active method call to terminate abruptly, until
(and unless) we come to a try block.

• Catch exceptions and do something corrective with try:

try {
Stuff that might throw exception;

} catch (SomeException e) {
Do something reasonable;

} catch (SomeOtherException e) {
Do something else reasonable;

}
Go on with life;

• When SomeException exception occurs during “Stuff. . . ” and is not
handled there, we immediately “do something reasonable” and then
“go on with life.”

• Descriptive string (if any) available as e.getMessage() for error
messages and the like.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 9



Catching Exceptions, II

• Using a supertype as the parameter type in a catch clause will catch
any subtype of that exception as well:

try {

Code that might throw a FileNotFoundException or a
MalformedURLException ;

catch (IOException ex) {

Handle any kind of IOException;
}

• Since FileNotFoundException and MalformedURLException both in-
herit from IOException, the catch handles both cases.

• Subtyping means that multiple catch clauses can apply; Java takes
the first.

• Stylistically, it’s nice to be more (concrete) about exception types
where possible.

• In particular, our style checker will therefore balk at the use of
Exception, RuntimeException, Error, and Throwable as exception
supertypes.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 10



Catching Exceptions, III

• There’s a relatively new shorthand for handling multiple exceptions
the same way:

try {

Code that might throw IllegalArgumentException
or IllegalStateException;

catch (IllegalArgumentException|IllegalStateException ex) {

Handle exception;
}

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 11



Exceptions: Checked vs. Unchecked

• The object thrown by throw command must be a subtype of Throwable
(in java.lang).

• Java pre-declares several such subtypes, among them

– Error, used for serious, unrecoverable errors;

– Exception, intended for all other exceptions;

– RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

• Pre-declared exceptions are all subtypes of one of these.

• Any subtype of Error or RuntimeException is said to be unchecked.

• All other exception types are checked.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 12



Unchecked Exceptions

• Intended for

– Programmer errors: many library functions throw
IllegalArgumentException when one fails to meet a precondi-
tion.

– Errors detected by the basic Java system: e.g.,

∗ Executing x.y when x is null,

∗ Executing A[i] when i is out of bounds,

∗ Executing (String) x when x turns out not to point to a String.

– Certain catastrophic failures, such as running out of memory.

• May be thrown anywhere at any time with no special preparation.

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 13



Checked Exceptions

• Intended to indicate exceptional circumstances that are not neces-
sarily programmer errors. Examples:

– Attempting to open a file that does not exist.

– Input or output errors on a file.

– Receiving an interrupt.

• Every checked exception that can occur inside a method must ei-
ther be handled by a try statement, or reported in the method’s
declaration.

• For example,

void myRead() throws IOException, InterruptedException { ... }

means that myRead (or something it calls) might throw IOException

or InterruptedException.

• Language Design: Why did Java make the following illegal?

class Parent { class Child extends Parent {

void f() { ... } void f () throws IOException { ... }

} }

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 14



Good Practice

• Throw exceptions rather than using print statements and System.exit
everywhere,

• . . . because response to a problem may depend on the caller, not just
method where problem arises.

• Nice to throw an exception when programmer violates preconditions.

• Particularly good idea to throw an exception rather than let bad
input corrupt a data structure.

• Good idea to document when methods throw exceptions.

• To convey information about the cause of exceptional condition, put
it into the exception rather than into some global variable:

class MyBad extends Exception { try {...

public IntList errs; } catch (MyBad e) {

MyBad(IntList nums) { errs=nums; } ... e.errs ...

} }

Last modified: Wed Feb 19 13:35:52 2020 CS61B: Lecture #12 15


	CS61B Lecture #12: Additional OOP Details, Exceptions
	Parent Constructors
	Default Constructors
	What Happens Here?
	Using an Overridden Method 
	Trick: Delegation and Wrappers
	What to do About Errors?
	Catching Exceptions
	Catching Exceptions, II
	Catching Exceptions, III
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice

