
CS61B Lecture #14: Integers

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 1



Integer Types and Literals

Type Bits Signed? Literals
byte 8 Yes Cast from int: (byte) 3
short 16 Yes None. Cast from int: (short) 4096

char 16 No

’a’ // (char) 97

’\n’ // newline ((char) 10)

’\t’ // tab ((char) 8)

’\\’ // backslash

’A’, ’\101’, ’\u0041’ // == (char) 65

int 32 Yes
123

0100 // Octal for 64

0x3f, 0xffffffff // Hexadecimal 63, -1 (!)

long 64 Yes
123L, 01000L, 0x3fL

1234567891011L

• Negative numerals are just negated (positive) literals.

• “N bits” means that there are 2N integers in the domain of the type:

– If signed, range of values is −2N−1 .. 2N−1 − 1.

– If unsigned, only non-negative numbers, and range is 0..2N − 1.

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 2



Overflow

• Problem: How do we handle overflow, such as occurs in 10000*10000*10000?

• Some languages throw an exception (Ada), some give undefined re-
sults (C, C++)

• Java defines the result of any arithmetic operation or conversion
on integer types to “wrap around”—modular arithmetic.

• That is, the “next number” after the largest in an integer type is
the smallest (like “clock arithmetic”).

• E.g., (byte) 128 == (byte) (127+1) == (byte) -128

• In general,

– If the result of some arithmetic subexpression is supposed to
have type T , an n-bit integer type,

– then we compute the real (mathematical) value, x,

– and yield a number, x′, that is in the range of T , and that is
equivalent to x modulo 2n.

– (That means that x− x′ is a multiple of 2n.)

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 3



Modular Arithmetic

• Define a ≡ b (mod n) to mean that a− b = kn for some integer k.

• Define the binary operation a mod n as the value b such that a ≡ b (mod n)
and 0 ≤ b < n for n > 0. (Can be extended to n ≤ 0 as well, but
we won’t bother with that here.) This is not the same as Java’s %

operation.

• Various facts: (Here, let a′ denote a mod n).

a′′ = a′

a′ + b′′ = (a′ + b)′ = a + b′

(a′ − b′)′ = (a′ + (−b)′)′ = (a− b)′

(a′ · b′)′ = a′ · b′ = a · b′

(ak)′ = ((a′)k)′ = (a · (ak−1)′)′, for k > 0.

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 4



Modular Arithmetic: Examples

• (byte) (64*8) yields 0, since 512− 0 = 2× 28.

• (byte) (64*2) and (byte) (127+1) yield -128, since 128− (−128) =
1× 28.

• (byte) (101*99) yields 15, since 9999− 15 = 39× ·28.

• (byte) (-30*13) yields 122, since −390− 122 = −2× 28.

• (char) (-1) yields 216 − 1, since −1− (216 − 1) = −1× 216.

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 5



Modular Arithmetic and Bits

• Why wrap around?

• Java’s definition is the natural one for a machine that uses binary
arithmetic.

• For example, consider bytes (8 bits):

Decimal Binary

101 1100101

×99 1100011

9999 100111|00001111

− 9984 100111|00000000

15 00001111

• In general, bit n, counting from 0 at the right, corresponds to 2n.

• The bits to the left of the vertical bars therefore represent multi-
ples of 28 = 256.

• So throwing them away is the same as arithmetic modulo 256.

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 6



Negative numbers

• Why this representation for -1?

1 000000012
+ −1 111111112
= 0 1|000000002

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

• The truncated bit is in the 28 place, so throwing it away gives an
equal number modulo 28. All bits to the left of it are also divisible
by 28.

• On unsigned types (char), arithmetic is the same, but we choose to
represent only non-negative numbers modulo 216:

1 00000000000000012
+ 216 − 1 11111111111111112
= 216 + 0 1|00000000000000002

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 7



Conversion

• In general Java will silently convert from one type to another if this
makes sense and no information is lost from value.

• Otherwise, cast explicitly, as in (byte) x.

• Hence, given

byte aByte; char aChar; short aShort; int anInt; long aLong;

// OK:

aShort = aByte; anInt = aByte; anInt = aShort;

anInt = aChar; aLong = anInt;

// Not OK, might lose information:

anInt = aLong; aByte = anInt; aChar = anInt; aShort = anInt;

aShort = aChar; aChar = aShort; aChar = aByte;

// OK by special dispensation:

aByte = 13; // 13 is compile-time constant

aByte = 12+100 // 112 is compile-time constant

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 8



Promotion

• Arithmetic operations (+, *, . . . ) promote operands as needed.

• Promotion is just implicit conversion.

• For integer operations,

– if any operand is long, promote both to long.

– otherwise promote both to int.

• So,

aByte + 3 == (int) aByte + 3 // Type int

aLong + 3 == aLong + (long) 3 // Type long

’A’ + 2 == (int) ’A’ + 2 // Type int

aByte = aByte + 1 // ILLEGAL (why?)

• But fortunately,

aByte += 1; // Defined as aByte = (byte) (aByte+1)

• Common example:

// Assume aChar is an upper-case letter

char lowerCaseChar = (char) (’a’ + aChar - ’A’); // why cast?

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 9



Bit twiddling

• Java (and C, C++) allow for handling integer types as sequences of
bits. No “conversion to bits” needed: they already are.

• Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100

& 10100111 | 10100111 ^ 10100111 ~ 10100111

00100100 10101111 10001011 01011000

• Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

• What is:

(-1) >>> 29?
x << n?
x >> n?
(x >>> 3) & ((1<<5)-1)?

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 10



Bit twiddling

• Java (and C, C++) allow for handling integer types as sequences of
bits. No “conversion to bits” needed: they already are.

• Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100

& 10100111 | 10100111 ^ 10100111 ~ 10100111

00100100 10101111 10001011 01011000

• Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

• What is:

(-1) >>> 29? = 7.
x << n?
x >> n?
(x >>> 3) & ((1<<5)-1)?

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 11



Bit twiddling

• Java (and C, C++) allow for handling integer types as sequences of
bits. No “conversion to bits” needed: they already are.

• Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100

& 10100111 | 10100111 ^ 10100111 ~ 10100111

00100100 10101111 10001011 01011000

• Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

• What is:

(-1) >>> 29? = 7.
x << n? = x · 2n.
x >> n?
(x >>> 3) & ((1<<5)-1)?

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 12



Bit twiddling

• Java (and C, C++) allow for handling integer types as sequences of
bits. No “conversion to bits” needed: they already are.

• Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100

& 10100111 | 10100111 ^ 10100111 ~ 10100111

00100100 10101111 10001011 01011000

• Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

• What is:

(-1) >>> 29? = 7.
x << n? = x · 2n.
x >> n? = ⌊x/2n⌋ (i.e., rounded down).
(x >>> 3) & ((1<<5)-1)?

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 13



Bit twiddling

• Java (and C, C++) allow for handling integer types as sequences of
bits. No “conversion to bits” needed: they already are.

• Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100

& 10100111 | 10100111 ^ 10100111 ~ 10100111

00100100 10101111 10001011 01011000

• Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

• What is:

(-1) >>> 29? = 7.
x << n? = x · 2n.
x >> n? = ⌊x/2n⌋ (i.e., rounded down).
(x >>> 3) & ((1<<5)-1)? 5-bit integer, bits 3–7 of x.

Last modified: Mon Sep 30 16:56:19 2019 CS61B: Lecture #14 14


	CS61B Lecture #14: Integers
	Integer Types and Literals
	Overflow
	Modular Arithmetic
	Modular Arithmetic: Examples
	Modular Arithmetic and Bits
	Negative numbers
	Conversion
	Promotion
	Bit twiddling

