CS61B Lecture #14: Integers

Last modified: Mon Sep 30 16:56:19 2019

Integer Types and Literals

Type	Bits	Signed?	Literals
byte	8	Yes	Cast from int: (byte) 3
short	16	Yes	None. Cast from int: (short) 4096
char	16	No	'a' // (char) 97 '\n' // newline ((char) 10) '\t' // tab ((char) 8) '\\' // backslash 'A', '\101', '\u0041' // == (char) 65
int	32	Yes	123 0100 // Octal for 64 0x3f, 0xffffffff // Hexadecimal 63, -1 (!)
long	64	Yes	123L, 01000L, 0x3fL 1234567891011L

- Negative numerals are just negated (positive) literals.
- \bullet "N bits" means that there are 2^N integers in the domain of the type:
 - If signed, range of values is $-2^{N-1} ext{ ... } 2^{N-1} 1$.
 - If unsigned, only non-negative numbers, and range is $0..2^N-1.$

Overflow

- Problem: How do we handle overflow, such as occurs in 10000*10000*10000?
- Some languages throw an exception (Ada), some give undefined results (C, C++)
- Java defines the result of any arithmetic operation or conversion on integer types to "wrap around"—modular arithmetic.
- That is, the "next number" after the largest in an integer type is the smallest (like "clock arithmetic").
- E.g., (byte) 128 == (byte) (127+1) == (byte) −128
- In general,
 - If the result of some arithmetic subexpression is supposed to have type T, an n-bit integer type,
 - then we compute the real (mathematical) value, x,
 - and yield a number, x', that is in the range of T, and that is equivalent to x modulo 2^n .
 - (That means that x x' is a multiple of 2^n .)

Modular Arithmetic

- Define $a \equiv b \pmod{n}$ to mean that a b = kn for some integer k.
- Define the binary operation $a \mod n$ as the value b such that $a \equiv b \pmod n$ and $0 \le b < n$ for n > 0. (Can be extended to $n \le 0$ as well, but we won't bother with that here.) This is **not** the same as Java's % operation.
- ullet Various facts: (Here, let a' denote $a \mod n$).

$$a'' = a'$$

$$a' + b'' = (a' + b)' = a + b'$$

$$(a' - b')' = (a' + (-b)')' = (a - b)'$$

$$(a' \cdot b')' = a' \cdot b' = a \cdot b'$$

$$(a^k)' = ((a')^k)' = (a \cdot (a^{k-1})')', \text{ for } k > 0.$$

Modular Arithmetic: Examples

- (byte) (64*8) yields 0, since $512 0 = 2 \times 2^8$.
- (byte) (64*2) and (byte) (127+1) yield -128, since 128 (-128) = 1×2^{8} .
- (byte) (101*99) yields 15, since $9999 15 = 39 \times \cdot 2^8$.
- (byte) (-30*13) yields 122, since $-390 122 = -2 \times 2^8$.
- (char) (-1) yields $2^{16} 1$, since $-1 (2^{16} 1) = -1 \times 2^{16}$.

Modular Arithmetic and Bits

- Why wrap around?
- Java's definition is the natural one for a machine that uses binary arithmetic.
- For example, consider bytes (8 bits):

Decimal	Binary	
101	1100101	
×99	1100011	
9999	100111 00001111	
- 9984	100111 0000000	
15	00001111	

- ullet In general, bit n, counting from 0 at the right, corresponds to 2^n .
- The bits to the left of the vertical bars therefore represent multiples of $2^8 = 256$.
- So throwing them away is the same as arithmetic modulo 256.

Negative numbers

• Why this representation for -1?

$$\begin{array}{c|cccc}
 & 1 & 00000001_2 \\
+ & -1 & 11111111_2 \\
= & 0 & 1 & | 00000000_2
\end{array}$$

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

- ullet The truncated bit is in the 2^8 place, so throwing it away gives an equal number modulo 2^8 . All bits to the left of it are also divisible by 2^8 .
- ullet On unsigned types (char), arithmetic is the same, but we choose to represent only non-negative numbers modulo 2^{16} :

$$\begin{array}{c|ccccc}
 & 1 & 0000000000000001_2 \\
+ & 2^{16} - 1 & 111111111111111_2 \\
= & 2^{16} + 0 & 1 | 00000000000000000_2
\end{array}$$

Conversion

- In general Java will silently convert from one type to another if this makes sense and no information is lost from value.
- Otherwise, cast explicitly, as in (byte) x.
- Hence, given

Promotion

- Arithmetic operations (+, *, ...) promote operands as needed.
- Promotion is just implicit conversion.
- For integer operations,
 - if any operand is long, promote both to long.
 - otherwise promote both to int.
- So,

```
aByte + 3 == (int) aByte + 3 // Type int
aLong + 3 == aLong + (long) 3 // Type long
'A' + 2 == (int) 'A' + 2 // Type int
aByte = aByte + 1 // ILLEGAL (why?)
```

• But fortunately,

```
aByte += 1;  // Defined as aByte = (byte) (aByte+1)
```

• Common example:

```
// Assume aChar is an upper-case letter
char lowerCaseChar = (char) ('a' + aChar - 'A'); // why cast?
```

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

Mask	Set	Flip	Flip all
00101100	00101100	00101100	
& 10100111	10100111	10100111	~ 10100111
00100100	10101111	10001011	01011000

- \bullet Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

Mask	Set	Flip	Flip all
00101100	00101100	00101100	
& 10100111	10100111	^ 10100111	~ 10100111
00100100	10101111	10001011	01011000

• Shifting:

• What is: $\begin{cases} x & << n? \\ x & >> n? \end{cases}$

$$x >> n$$
? $(x >>> 3) & ((1<<5)-1)?$

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

Mask	Set	Flip	Flip all
00101100	00101100	00101100	
& 10100111	10100111	10100111	~ 10100111
00100100	10101111	10001011	01011000

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

Mask	Set	Flip	Flip all
00101100	00101100	00101100	
& 10100111	10100111	10100111	~ 10100111
00100100	10101111	10001011	01011000

- \bullet Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.
- Operations and their uses:

Mask	Set	Flip	Flip all
00101100	00101100	00101100	
& 10100111	10100111	^ 10100111	~ 10100111
00100100	10101111	10001011	01011000