
CS61B Lecture #16: Complexity

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 1

What Are the Questions?

• Cost is a principal concern throughout engineering:

“An engineer is someone who can do for a dime what any fool
can do for a dollar.”

• Cost can mean

– Operational cost (for programs, time to run, space requirements).

– Development costs: How much engineering time? When deliv-
ered?

– Maintenance costs: Upgrades, bug fixes.

– Costs of failure: How robust? How safe?

• Is this program fast enough? Depends on:

– For what purpose;

– For what input data.

• How much space (memory, disk space)?

– Again depends on what input data.

• How will it scale, as input gets big?

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 2

Enlightening Example

Problem: Scan a text corpus (say 108 bytes or so), and find and print
the 20 most frequently used words, together with counts of how often
they occur.

• Solution 1 (Knuth): Heavy-Duty data structures

– Hash Trie implementation, randomized placement, pointers ga-
lore, several pages long.

• Solution 2 (Doug McIlroy): UNIX shell script:

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

• Which is better?

– #1 is much faster,

– but #2 took 5 minutes to write and processes 100MB in ≈ 50 sec.

– I pick #2.

• In very many cases, almost anything will do: Keep It Simple.
Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 3

Cost Measures (Time)

• Wall-clock or execution time

– You can do this at home:

time java FindPrimes 1000

– Advantages: easy to measure, meaning is obvious.

– Appropriate where time is critical (real-time systems, e.g.).

– Disadvantages: applies only to specific data set, compiler, ma-
chine, etc.

• Dynamic statement counts of # of times statements are executed:

– Advantages: more general (not sensitive to speed of machine).

– Disadvantages: doesn’t tell you actual time, still applies only to
specific data sets.

• Symbolic execution times:

– That is, formulas for execution times as functions of input size.

– Advantages: applies to all inputs, makes scaling clear.

– Disadvantage: practical formula must be approximate, may tell
very little about actual time.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 4

Asymptotic Cost

• Symbolic execution time lets us see shape of the cost function.

• Since we are approximating anyway, pointless to be precise about
certain things:

– Behavior on small inputs :

∗ Can always pre-calculate some results.

∗ Times for small inputs not usually important.

∗ Often more interested in asymptotic behavior as input size
becomes very large.

– Constant factors (as in “off by factor of 2”):

∗ Just changing machines causes constant-factor change.

• How to abstract away from (i.e., ignore) these things?

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 5

Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but
rather families of functions with similarly behaved magnitudes.

• Then say something like “f is bounded by g if it is in g’s family.”

• For any function g(x), the functions 2g(x), 0.5g(x), or for any K > 0,
K · g(x), all have the same “shape”. So put all of them into g’s family.

• Any function h(x) such that h(x) = K · g(x) for x > M (for some
constant M) has g’s shape “except for small values.” So put all of
these in g’s family.

• For upper limits, throw in all functions whose absolute value is ev-
erywhere≤ some member of g’s family. Call this set O(g) or O(g(n)).

• Or, for lower limits, throw in all functions whose absolute value is
everywhere ≥ some member of g’s family. Call this set Ω(g).

• Finally, define Θ(g) = O(g) ∩ Ω(g)—the set of functions bracketed
in magnitude by two members of g’s family.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 6

Big Oh

• Goal: Specify bounding from above.

2g(x)

g(x)

f(x)

M = 1

• Here, f(x) ≤ 2g(x) as long as x > 1,

• So f(x) is in g’s “bounded-above family,” written

f(x) ∈ O(g(x)),

• . . . even though (in this case) f(x) > g(x) everywhere.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 7

Big Omega

• Goal: Specify bounding from below:

g(x)

0.5g(x)

f ′(x)

M = 1

• Here, f ′(x) ≥ 1
2
g(x) as long as x > 1,

• So f ′(x) is in g’s “bounded-below family,” written

f ′(x) ∈ Ω(g(x)),

• . . . even though f(x) < g(x) everywhere.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 8

Big Theta

• In the two previous slides, we not only have f(x) ∈ O(g(x)) and
f ′(x) ∈ Ω(g(x)),. . .

• . . . but also f(x) ∈ Ω(g(x)) and f ′(x) ∈ O(g(x)).

• We can summarize this all by saying f(x) ∈ Θ(g(x)) and f ′(x) ∈
Θ(g(x)).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 9

Aside: Various Mathematical Pedantry

• Technically, if I am going to talk about O(·), Ω(·) and Θ(·) as sets of
functions, I really should write, for example,

f ∈ O(g) instead of f(x) ∈ O(g(x))

• In effect, f(x) ∈ O(g(x)) is short for λ x. f(x) ∈ O(λ x. g(x)).

• The standard notation outside this course, in fact, is f(x) = O(g(x)),
but personally, I think that’s a serious abuse of notation.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 10

How We Use Order Notation

• Elsewhere in mathematics, you’ll see O(. . .), etc., used generally to
specify bounds on functions.

• For example,

π(N) = Θ(
N

lnN
)

which I would prefer to write

π(N) ∈ Θ(
N

lnN
)

(Here, π(N) is the number of primes less than or equal to N .)

• Also, you’ll see things like

f(x) = x3 + x2 + O(x) (or f(x) ∈ x3 + x2 +O(x)),

meaning that f(x) = x3 + x2 + g(x) where g(x) ∈ O(x).

• For our purposes, the functions we will be bounding will be cost func-
tions: functions that measure the amount of execution time or the
amount of space required by a program or algorithm.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 11

Why It Matters

• Computer scientists often talk as if constant factors didn’t matter
at all, only the difference of Θ(N) vs. Θ(N 2).

• In reality they do matter, but at some point, constants always get
swamped.

n 16 lg n
√
n n n lg n n2 n3 2n

2 16 1.4 2 2 4 8 4
4 32 2 4 8 16 64 16
8 48 2.8 8 24 64 512 256
16 64 4 16 64 256 4, 096 65, 636
32 80 5.7 32 160 1024 32, 768 4.2× 109

64 96 8 64 384 4, 096 262, 144 1.8× 1019

128 112 11 128 896 16, 384 2.1× 109 3.4× 1038
...

1, 024 160 32 1, 024 10, 240 1.0× 106 1.1× 109 1.8× 10308
...
220 320 1024 1.0× 106 2.1× 107 1.1× 1012 1.2× 1018 6.7× 10315,652

• For example: replace column n2 with 106 · n2 and it still becomes
dominated by 2n.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 12

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?

• In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N .

• Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

• N = problem size.

Time (µsec) for Max N Possible in
problem size N 1 second 1 hour 1 month 1 century

lgN 10300000 101000000000 108·10
11

1010
14

N 106 3.6 · 109 2.7 · 1012 3.2 · 1015
N lgN 63000 1.3 · 108 7.4 · 1010 6.9 · 1013
N 2 1000 60000 1.6 · 106 5.6 · 107
N 3 100 1500 14000 150000
2N 20 32 41 51

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 13

Using the Notation

• Can use this order notation for any kind of real-valued function.

• We will use them to describe cost functions. Example:

/** Find position of X in list L, or -1 if not found. */

int find(List L, Object X) {
int c;

for (c = 0; L != null; L = L.next, c += 1)

if (X.equals(L.head)) return c;

return -1;

}
• Choose representative operation: number of .equals tests.

• If N is length of L, then loop does at most N tests: worst-case
time is N tests.

• In fact, total # of instructions executed is roughly proportional
to N in the worst case, so can also say worst-case time is O(N),
regardless of units used to measure.

• Use N > M provision (in defn. of O(·)) to ignore empty list.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 14

Be Careful

• It’s also true that the worst-case time is O(N 2), since N ∈ O(N 2)
also: Big-Oh bounds are loose.

• The worst-case time is Ω(N), since N ∈ Ω(N), but that does not
mean that the loop always takes time N , or even K ·N for some K.

• Instead, we are just saying something about the function that maps
N into the largest possible time required to process any array of
length N .

• To say as much as possible about our worst-case time, we should try
to give a Θ bound: in this case, we can: Θ(N).

• But again, that still tells us nothing about best-case time, which
happens when we find X at the beginning of the loop. Best-case time
is Θ(1).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 15

Effect of Nested Loops

• Nested loops often lead to polynomial bounds:

for (int i = 0; i < A.length; i += 1)

for (int j = 0; j < A.length; j += 1)

if (i != j && A[i] == A[j])

return true;

return false;

• Clearly, time is O(N 2), where N = A.length. Worst-case time is
Θ(N 2).

• Loop is inefficient though:

for (int i = 0; i < A.length; i += 1)

for (int j = i+1; j < A.length; j += 1)

if (A[i] == A[j]) return true;

return false;

• Now worst-case time is proportional to

N − 1 +N − 2 + . . . + 1 = N(N − 1)/2 ∈ Θ(N 2)

(so asymptotic time unchanged by the constant factor).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 16

Recursion and Recurrences: Fast Growth

• Silly example of recursion. In the worst case, both recursive calls
happen:

/** True iff X is a substring of S */

boolean occurs(String S, String X) {
if (S.equals(X)) return true;

if (S.length() <= X.length()) return false;

return

occurs(S.substring(1), X) ||

occurs(S.substring(0, S.length()-1), X);

}

• Define C(N) to be the worst-case cost of occurs(S,X) for S of
length N , X of fixed size N0, measured in # of calls to occurs. Then

C(N) =







1, if N ≤ N0,
2C(N − 1) + 1 if N > N0

• So C(N) grows exponentially:

C(N) = 2C(N − 1) + 1 = 2(2C(N − 2) + 1) + 1 = . . . = 2(· · · 2
︸ ︷︷ ︸

N−N0

·1 + 1) + . . . + 1

= 2N−N0 + 2N−N0−1 + 2N−N0−2 + . . . + 1 = 2N−N0+1 − 1 ∈ Θ(2N)

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 17

Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes

* S in ascending order, 0 <= L <= U-1 < S.length. */

boolean isIn(String X, String[] S, int L, int U) {
if (L > U) return false;

int M = (L+U)/2;

int direct = X.compareTo(S[M]);

if (direct < 0) return isIn(X, S, L, M-1);

else if (direct > 0) return isIn(X, S, M+1, U);

else return true;

}

• Here, worst-case time, C(D), (as measured by # of calls to .compareTo),
depends on size D = U − L + 1.

• We eliminate S[M] from consideration each time and look at half the
rest. Assume D = 2k − 1 for simplicity, so:

C(D) =







0, if D ≤ 0,
1 + C((D − 1)/2), if D > 0.

= 1 + 1 + . . . + 1
︸ ︷︷ ︸

k

+0

= k = lg(D + 1) ∈ Θ(lgD)

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 18

Another Typical Pattern: Merge Sort

List sort(List L) {
if (L.length() < 2) return L;

Split L into L0 and L1 of about equal size;
L0 = sort(L0); L1 = sort(L1);

return Merge of L0 and L1

}







Merge (“combine into a single or-
dered list”) takes time proportional
to size of its result.

• Assuming that size of L is N = 2k, worst-case cost function, C(N),
counting just merge time (which is proportional to # items merged):

C(N) =







0, if N < 2;
2C(N/2) +N, if N ≥ 2.

= 2(2C(N/4) +N/2) +N

= 4C(N/4) +N +N

= 8C(N/8) +N +N +N

= N · 0 +N +N + . . . +N
︸ ︷︷ ︸

k=lgN

= N lgN

• In general, can say it’s Θ(N lgN) for arbitrary N (not just 2k).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 19

	CS61B Lecture #16: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Big Theta
	Aside: Various Mathematical Pedantry
	How We Use Order Notation
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

