CS61B Lecture #16: Complexity

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 1

What Are the Questions?

e Cost is a principal concern throughout engineering:

"An engineer is someone who can do for a dime what any fool
can do for a dollar.”

e Cost can mean

- Operational cost (for programs, time to run, space requirements).

- Development costs: How much engineering time? When deliv-
ered?

- Maintenance costs: Upgrades, bug fixes.
- Costs of failure: How robust? How safe?

e Is this program fast enough? Depends on:

- For what purpose;
- For what input data.

e How much space (memory, disk space)?
- Again depends on what input data.
e How will it scale, as input gets big?

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 2

Enlightening Example

Problem: Scan a text corpus (say 10° bytes or so0), and find and print

the 20 most frequently used words, together with counts of how often
they occur.

e Solution 1 (Knuth): Heavy-Duty data structures

- Hash Trie implementation, randomized placement, pointers ga-
lore, several pages long.

e Solution 2 (Doug McIlroy): UNIX shell script:

tr -c -s ’[:alpha:]’ [\nx]’ < FILE | \
sort | \

uniq -c¢ | \

sort -n -r -k 1,1 | \

sed 20q

e Which is better?

- #1 is much faster,
- but #2 took 5 minutes to write and processes 100MB in ~ 50 sec.
- I pick #2.

e In very many cases, almost anything will do: Keep It Simple.
Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 3

Cost Measures (Time)

e Wall-clock or execution time

- You can do this at home:
time java FindPrimes 1000

- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, ma-
chine, etc.
e Dynamic statement counts of # of times statements are executed:

- Advantages: more general (not sensitive o speed of machine).
- Disadvantages: doesn't tell you actual time, still applies only to
specific data sefts.
e Symbolic execution times:

- That is, formulas for execution times as functions of input size.
- Advantages: applies to all inputs, makes scaling clear.

- Disadvantage: practical formula must be approximate, may tell
very little about actual time.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 4

Asymptotic Cost

e Symbolic execution time lets us see shape of the cost function.

e Since we are approximating anyway, pointless to be precise about
certain things:
- Behavior on small inputs:

* Can always pre-calculate some results.
+ Times for small inputs not usually important.

+ Often more interested in asymptotic behavior as input size
becomes very large.

- Constant factors (as in "off by factor of 2"):
+ Just changing machines causes constant-factor change.

e How to abstract away from (i.e., ignore) these things?

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 b5

Handy Tool: Order Notation

e Idea: Don't try to produce specific functions that specify size, but
rather families of functions with similarly behaved magnitudes.

e Then say something like " f is bounded by g if it is in ¢'s family."

e For any function g(x), the functions 2¢(z), 0.5g(x), or for any K > 0,
K - g(z), all have the same "shape”. So put all of them into g's family.

e Any function h(z) such that h(z) = K - g(x) for z > M (for some
constant M) has g's shape “"except for small values." So put all of
these in g's family.

e For upper limits, throw in all functions whose absolute value is ev-
erywhere < some member of ¢'s family. Call this set O(g) or O(g(n)).

e Or, for lower limits, throw in all functions whose absolute value is
everywhere > some member of ¢'s family. Call this set (2(g).

e Finally, define ©(g) = O(g) N)(g)—the set of functions bracketed
in magnitude by two members of g's family.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 6

Big Oh

e Goal: Specify bounding from above.

M=1

e Here, f(z) <2¢g(x) aslongas z > 1,
e So f(x) isin g's "bounded-above family,” written

f(z) € O(g(x)),

e ...even though (in this case) f(x) > g(x) everywhere.

Last modified: Thu Feb 27 23:10:03 2020

CS61B: Lecture #16 7

Big Omega

e Goal: Specify bounding from below:

M=1

f'(x)
0.5g(x)

e Here, f'(z) > 3g(z) as longas = > 1,

e So f'(z) is in ¢'s "bounded-below family,” written
f'(z) € Qg(x)),

e ...even though f(z) < g(x) everywhere.

Last modified: Thu Feb 27 23:10:03 2020

CS61B: Lecture #16 8

Big Theta

e In the two previous slides, we not only have f(z) € O(g(x)) and
f'(x) € Qg(x))....
e ...butalso f(z) € Qg(x)) and f'(z) € O(g(x)).

e We can summarize this all by saying f(z) € O(g(z)) and f'(x) €
O(g(x)).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 9

Aside: Various Mathematical Pedantry

e Technically, if T am going to talk about O(-), (-) and ©(-) as sets of
functions, I really should write, for example,

f€0(g) insteadof f(z)€ O(g(z))

e In effect, f(z) € O(g(x)) is short for A z. f(z) € O(\ z. g(x)).

e The standard notation outside this course, in fact, is f(z) = O(g(z)),
but personally, I think that's a serious abuse of notation.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 10

How We Use Order Notation

e Elsewhere in mathematics, you'll see Of...), etc., used generally to
specify bounds on functions.

e For example,

N
m(N) = @(m)
which I would prefer to write
N
r(N) € O()

(Here, 7(N) is the number of primes less than or equal to N.)
e Also, you'll see things like
flx)=2+2*+0(x) (or f(z) € 2° +2* + O(x)),
meaning that f(z) = ° + 2° + g(x) where g(z) € O(x).

e For our purposes, the functions we will be bounding will be cost func-
tions: functions that measure the amount of execution time or the
amount of space required by a program or algorithm.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 11

Why It Matters

e Computer scientists often talk as if constant factors didn't matter
at all, only the difference of O(N) vs. O(N?).

e In reality they do matter, but at some point, constants always get
swamped.

n |16lgn /n n nlgn n? n’ 2"

2 16 1.4 2 2 4 8 4

4 32 2 4 8 16 64 16

8 48 2.8 8 24 64 512 256

16 64 4 16 64 256 4,096 65, 636

32 80 5.7 32 160 1024 32, 768 4.2 x 107

64 96 8 64 384 4,096 262,144 1.8 x 10"

128 | 112 11 128 896 16,384 2.1 x 10 3.4 x 103
1,024| 160 32 1,024 10,240 1.0 x10° 1.1 x10? 1.8 x 103"

2201320 1024 1.0 x 10° 2.1 x 107 1.1 x 10'? 1.2 x 108 6.7 x 10315652

e For example: replace column n* with 10° - n* and it still becomes
dominated by 2".

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 12

Some Intuition on Meaning of Growth

e How big a problem can you solve in a given fime?

e In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N.

e Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

e N = problem size.

Time (usec) for

Max N Possible in

problem size N | 1second 1 hour 1 month 1 century
lo N 1()300000 11000000000 108-1011 101014
N 109 3.6 - 10? 2.7-10%2 3.2 101
NlgN 63000 1.3 - 108 7.4-101 6.9 - 103
N? 1000 60000 1.6 - 109 5.6 - 107
N3 100 1500 14000 150000
N 20 32 41 51

Last modified: Thu Feb 27 23:10:03 2020

CS61B: Lecture #16 13

Using the Notation

e Can use this order notation for any kind of real-valued function.

e We will use them to describe cost functions. Example:

/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
int c;
for (¢ = 0; L !'= null; L = L.next, ¢ += 1)
if (X.equals(L.head)) return c;
return -1;

}

e Choose representative operation: number of .equals fests.

e If N is length of L, then loop does at most N tests: worst-case
time is N tests.

e In fact, total # of instructions executed is roughly proportional
to N in the worst case, so can also say worst-case time is O(N),
regardless of units used to measure.

e Use N > M provision (in defn. of O(-)) to ighore empty list.

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 14

Be Careful

e It's also true that the worst-case time is O(N?), since N € O(N?)
also: Big-Oh bounds are loose.

e The worst-case time is QQ(V), since N € Q(N), but that does not
mean that the loop always takes time N, or even K - N for some K.

e Instead, we are just saying something about the function that maps
N into the largest possible time required to process any array of
length V.

e To say as much as possible about our worst-case time, we should try
to give a © bound: in this case, we can: O(N).

e But again, that still tells us nothing about best-case time, which

happens when we find X at the beginning of the loop. Best-case time
is O(1).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 15

Effect of Nested Loops

e Nested loops often lead to polynomial bounds:
for (int i = 0; i < A.length; i += 1)
for (int j = 0; j < A.length; j += 1)
if (i '= 3 && A[i] == A[j])
return true;
return false;

e Clearly, time is O(N?), where N = A.length. Worst-case time is
O(N?).

e Loop is inefficient though:

for (int 1 = 0; i < A.length; i += 1)
for (int j = i+1; j < A.length; j += 1)
if (A[i] == A[j]) return true;
return false;

e Now worst-case time is proportional to
N—1+N—-2+...+1=N(N—-1)/2 € 6(N?

(so asymptotic time unchanged by the constant factor).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 16

Recursion and Recurrences: Fast Growth

e Silly example of recursion. In the worst case, both recursive calls
happen:

/** True iff X is a substring of S */
boolean occurs(String S, String X) {
if (S.equals(X)) return true;
if (S.length() <= X.length()) return false;
return
occurs(S.substring(1), X) ||
occurs(S.substring(0, S.length()-1), X);

}

e Define C(N) to be the worst-case cost of occurs(S,X) for S of
length IV, X of fixed size N, measured in # of calls to occurs. Then

1 if N <N,

CIN) = 27C(N—1)+1 if N> N

e So C(N) grows exponentially:

C(N) =2C(N—-1)+1=22CN-=2)+1)+1=...=2(---2:1+1)+...

~—_————

N—-N,
= 2NN g N =Noml g oN=Mo=2 1 =2Vt 1 e o(2Y)

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 17

+1

Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes
* S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
if (L > U) return false;
int M = (L+U)/2;
int direct = X.compareTo(S[M]);
if (direct < 0) return isIn(X, S, L, M-1);
else if (direct > 0) return isIn(X, S, M+1, U);
else return true;

}

e Here, worst-case time, C'(D), (as measured by # of calls to . compareTo),
dependsonsize D =U — L + 1.

e We eliminate S[M] from consideration each time and look at half the
rest. Assume D = 2" — 1 for simplicity, so:

0, if D <0,
CD) =1 (D -1)/2), if D >0
= 14+14+...4+4140

k
= k=1g(D+1) €0O(gD)

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 18

Another Typical Pattern: Merge Sort

List sort(List L) {

if (L.length() < 2) return L;
TR o erge bine i ingle or-
Split L into LO and L1 of about equal size; Merge (“combine into a single or

L0 = sort(L0): L1 = sort(Li): dergd list .) takes time proportional
return Merge of LO and L1 to size of its result.

}

e Assuming that size of L is N = 2%, worst-case cost function, C'(NN),
counting just merge time (which is proportional to # items merged):

0, if N < 2;
CIN) =V oc(N/2)+ N, if N > 2
= 2(2C(N/4)+ N/2)+ N
= 4C(N/4)+ N+ N
= 8C(N/8)+ N+ N+ N

= N-O+N+N+...+N
k=lg N

= NlgN
e In general, can say it's O(Nlg N) for arbitrary N (not just 2F).

Last modified: Thu Feb 27 23:10:03 2020 CS61B: Lecture #16 19

	CS61B Lecture #16: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Big Theta
	Aside: Various Mathematical Pedantry
	How We Use Order Notation
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

