
Administrivia

• Please make sure you have obtained a Unix account.

• Lab #1 is due Wednesday (end of Wednesday at midnight). Usually,
labs are due Friday midnight of the week they occur. It is especially
important to set up your central reppository.

• If you decide not to take this course after all, please tell CalCentral
ASAP, so that we can adjust the waiting list accordingly.

• HW #0 will be up this evening, due next Friday at midnight. While
you get credit for any submission, we strongly suggest that you give
the problems a serious try.

• We strongly discourage taking this course P/NP (or S/U).

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 1

Lecture #2: Let’s Write a Program: Prime Numbers

Problem: want java Primes U to print prime numbers through U .
You type: java Primes 101

It types: 2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101

Definition: A prime number is an integer greater than 1 that has no
divisors smaller than itself other than 1.
(Alternatively: p > 1 is prime iff gcd(p, x) = 1 for all 0 < x < p.)

Useful Facts:

• k ≤
√
N iff N/k ≥

√
N , for N, k > 0.

• If k divides N then N/k divides N .

So: Try all potential divisors up to and including the square root.

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 2

Plan

public class Primes {
/** Print all primes up to ARGS[0] (interpreted as an

* integer), 10 to a line. */

public static void main(String[] args) {
printPrimes(Integer.parseInt(args[0]));

}

/** Print all primes up to and including LIMIT, 10 to

* a line. */

private static void printPrimes(int limit) {
/*{ For every integer, x, between 2 and LIMIT, print it if

isPrime(x), 10 to a line. }*/
}

/** True iff X is prime */

private static boolean isPrime(int x) {
return /*(X is prime)*/;

}
}
Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 3

Testing for Primes

private static boolean isPrime(int x) {
if (x <= 1)

return false;

else

return !isDivisible(x, 2); // "!" means "not"

}

/** True iff X is divisible by any positive number >=K and < X,

* given K > 1. */

private static boolean isDivisible(int x, int k) {
if (k >= x) // a "guard"

return false;

else if (x % k == 0) // "%" means "remainder"

return true;

else // if (k < x && x % k != 0)

return isDivisible(x, k+1);

}

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 4

Thinking Recursively

Understand and check isDivisible(13,2) by tracing one level.

/** True iff X is divisible by

* some number >=K and < X,

* given K > 1. */

private static boolean isDivisible...

if (k >= x)

return false;

else if (x % k == 0)

return true;

else

return isDivisible(x, k+1);

}

Lesson: Comments aid understanding.
Make them count !

• Call assigns x=13, k=2

• Body has form ‘if (k >= x) S1

else S2’.

• Since 2 < 13, we evaluate the
first else.

• Check if 13 mod 2 = 0; it’s not.

• Left with isDivisible(13,3).

• Rather than tracing it, instead
use the comment:

• Since 13 is not divisible by any
integer in the range 3..12 (and
3 > 1), isDivisible(13,3) must
be false, and we’re done!

• Sounds like that last step begs
the question. Why doesn’t it?

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 5

Iteration

• isDivisible is tail recursive, and so creates an iterative process.

• Traditional “Algol family” production languages have special syntax
for iteration. Four equivalent versions of isDivisible:

if (k >= x)

return false;

else if (x % k == 0)

return true;

else

return isDivisible(x, k+1);

while (k < x) { // !(k >= x)

if (x % k == 0)

return true;

k = k+1 ;

// or k += 1, or (yuch) k++

}
return false;

int k1 = k;

while (k1 < x) {
if (x % k1 == 0)

return true;

k1 += 1 ;

}
return false;

for (int k1 = k ; k1 < x ; k1 += 1) {
if (x % k1 == 0)

return true;

}
return false;

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 6

Using Facts about Primes

• We haven’t used the Useful Facts from an earlier slide. Only have
to check for divisors up to the square root.

• So, reimplement the iterative version of isDivisible:

/** True iff X is divisible by some number >=K and < X,

* given that K > 1, and that X is not divisible by

* any number >1 and <K. */

private static boolean isDivisible(int x, int k) {
int limit = (int) Math.round(Math.sqrt(x));

for (int k1 = k; k1 <= limit; k1 += 1) {
if (x % k1 == 0)

return true;

}
return false;

}
• Why the additional (blue) condition in the comment?

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 7

Cautionary Aside: Floating Point

• In the last slide, we had

int limit = (int) Math.round(Math.sqrt(x));

for (int k1 = k; k1 <= limit; k1 += 1) {
...

intending that this would check all values of k1 up to and including
the square root of x.

• Since floating-point operations yield approximations to the corre-
sponding mathematical operations, you might ask the following about
(int) Math.round(Math.sqrt(x)):

– Is it always at least ⌊√x⌋? (⌊z⌋ means “the largest integer ≤ z.”)
If not, we might miss testing

√
x when x is a perfect square.

• As it happens, the answer is “yes” for IEEE floating-point square
roots.

• Just an example of the sort of detail that must be checked in edge
cases.

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 8

Final Task: printPrimes (Simplified)

/** Print all primes up to and including LIMIT. */

private static void printPrimes(int limit) {

}

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 9

Simplified printPrimes Solution

/** Print all primes up to and including LIMIT. */

private static void printPrimes(int limit) {
for (int p = 2; p <= limit; p += 1) {

if (isPrime(p)) {
System.out.print(p + " ");

}
}
System.out.println();

}

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 10

printPrimes (full version)

/** Print all primes up to and including LIMIT, 10 to

* a line. */

private static void printPrimes(int limit) {
int np;

np = 0;

for (int p = 2; p <= limit; p += 1) {
if (isPrime(p)) {

System.out.print(p + " ");

np += 1;

if (np % 10 == 0)

System.out.println();

}
}
if (np % 10 != 0)

System.out.println();

}

Last modified: Fri Jan 24 14:29:30 2020 CS61B: Lecture #2 11

	Administrivia
	Lecture #2: Let's Write a Program: Prime Numbers
	Plan
	Testing for Primes
	Thinking Recursively
	Iteration
	Using Facts about Primes
	Cautionary Aside: Floating Point
	Final Task: printPrimes (Simplified)
	Simplified printPrimes Solution
	printPrimes (full version)

