
CS61B Lecture #26

Today:

• Sorting algorithms: why?

• Insertion Sort.

• Inversions

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 1

Purposes of Sorting

• Sorting supports searching

• Binary search standard example

• Also supports other kinds of search:

– Are there two equal items in this set?

– Are there two items in this set that both have the same value for
property X?

– What are my nearest neighbors?

• Used in numerous unexpected algorithms, such as convex hull (small-
est convex polygon enclosing set of points).

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 2

Some Definitions

• A sorting algorithm (or sort) permutes (re-arranges) a sequence of
elements to brings them into order, according to some total order.

• A total order, �, is:

– Total: x � y or y � x for all x, y.

– Reflexive: x � x;

– Antisymmetric: x � y and y � x iff x = y.

– Transitive: x � y and y � z implies x � z.

• However, our orderings may treat unequal items as equivalent:

– E.g., there can be two dictionary definitions for the same word.
If we sort only by the word being defined (ignoring the defini-
tion), then sorting could put either entry first.

– A sort that does not change the relative order of equivalent en-
tries (compared to the input) is called stable.

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 3

Classifications

• Internal sorts keep all data in primary memory.

• External sorts process large amounts of data in batches, keeping
what won’t fit in secondary storage (in the old days, tapes).

• Comparison-based sorting assumes only thing we know about keys is
their order.

• Radix sorting uses more information about key structure.

• Insertion sorting works by repeatedly inserting items at their ap-
propriate positions in the sorted sequence being constructed.

• Selection sorting works by repeatedly selecting the next larger
(smaller) item in order and adding it to one end of the sorted se-
quence being constructed.

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 4

Sorting Arrays of Primitive Types in the Java Library

• The java library provides static methods to sort arrays in the class
java.util.Arrays.

• For each primitive type P other than boolean, there are

/** Sort all elements of ARR into non-descending order. */

static void sort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending

* order. */

static void sort(P[] arr, int first, int end) { ... }

/** Sort all elements of ARR into non-descending order,

* possibly using multiprocessing for speed. */

static void parallelSort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending

* order, possibly using multiprocessing for speed. */

static void parallelSort(P[] arr, int first, int end) {...}

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 5

Sorting Arrays of Reference Types in the Java Library

• For reference types, C, that have a natural order (that is, that im-
plement java.lang.Comparable), we have four analogous methods
(one-argument sort, three-argument sort, and two parallelSort

methods):

/** Sort all elements of ARR stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(C[] arr) {...}
etc.

• And for all reference types, R, we have four more:
/** Sort all elements of ARR stably into non-descending order

* according to the ordering defined by COMP. */

static <R> void sort(R[] arr, Comparator<? super R> comp) {...}
etc.

• Q: Why the fancy generic arguments?

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 6

Sorting Arrays of Reference Types in the Java Library

• For reference types, C, that have a natural order (that is, that im-
plement java.lang.Comparable), we have four analogous methods
(one-argument sort, three-argument sort, and two parallelSort

methods):

/** Sort all elements of ARR stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(C[] arr) {...}
etc.

• And for all reference types, R, we have four more:
/** Sort all elements of ARR stably into non-descending order

* according to the ordering defined by COMP. */

static <R> void sort(R[] arr, Comparator<? super R> comp) {...}
etc.

• Q: Why the fancy generic arguments?

• A: We want to allow types that have compareTo methods that apply
also to more general types.

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 7

Sorting Lists in the Java Library

• The class java.util.Collections contains two methods similar to
the sorting methods for arrays of reference types:

/** Sort all elements of LST stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(List<C> lst) {...}
etc.

/** Sort all elements of LST stably into non-descending

* order according to the ordering defined by COMP. */

static <R> void sort(List<R> , Comparator<? super R> comp) {...}
etc.

• Also an instance method in the List<R> interface itself:

/** Sort all elements of LST stably into non-descending

* order according to the ordering defined by COMP. */

void sort(Comparator<? super R> comp) {...}

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 8

Examples

• Assume:

import static java.util.Arrays.*;

import static java.util.Collections.*;

• Sort X, a String[] or List<String>, into non-descending order:

sort(X); // or ...

• Sort X into reverse order (Java 8):

sort(X, (String x, String y) -> { return y.compareTo(x); });
// or

sort(X, Collections.reverseOrder()); // or

X.sort(Collections.reverseOrder()); // for X a List

• Sort X[10], ..., X[100] in array or List X (rest unchanged):

sort(X, 10, 101);

• Sort L[10], ..., L[100] in list L (rest unchanged):

sort(L.sublist(10, 101));

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 9

Sorting by Insertion

• Simple idea:

– starting with empty sequence of outputs.

– add each item from input, inserting into output sequence at right
point.

• Very simple, good for small sets of data.

• With vector or linked list, time for find + insert of one item is at
worst Θ(k), where k is # of outputs so far.

• This gives us a Θ(N 2) algorithm (worst case as usual).

• Can we say more?

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 10

Inversions

• Can run in Θ(N) comparisons if already sorted.

• Consider a typical implementation for arrays:

for (int i = 1; i < A.length; i += 1) {

int j;

Object x = A[i];

for (j = i-1; j >= 0; j -= 1) {

if (A[j].compareTo(x) <= 0) /* (1) */

break;

A[j+1] = A[j]; /* (2) */

}

A[j+1] = x;

}

• #times (1) executes for each j ≈ how far x must move.

• If all items withinK of proper places, then takesO(KN) operations.

• Thus good for any amount of nearly sorted data.

• One measure of unsortedness: # of inversions: pairs that are out
of order (= 0 when sorted, N(N − 1)/2 when reversed).

• Each execution of (2) decreases inversions by 1.
Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 11

Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

• First sort subsequences of elements 2k − 1 apart:

– sort items #0, 2k − 1, 2(2k − 1), 3(2k − 1), . . ., then

– sort items #1, 1 + 2k − 1, 1 + 2(2k − 1), 1 + 3(2k − 1), . . ., then

– sort items #2, 2 + 2k − 1, 2 + 2(2k − 1), 2 + 3(2k − 1), . . ., then

– etc.

– sort items #2k − 2, 2(2k − 1)− 1, 3(2k − 1)− 1, . . .,

– Each time an item moves, can reduce #inversions by as much as
2k+1 − 3. [corrected 4/3]

• Now sort subsequences of elements 2k−1 − 1 apart:

– sort items #0, 2k−1 − 1, 2(2k−1 − 1), 3(2k−1 − 1), . . ., then

– sort items #1, 1 + 2k−1 − 1, 1 + 2(2k−1 − 1), 1 + 3(2k−1 − 1), . . .,

– ...

• End at plain insertion sort (20 = 1 apart), but with most inversions
gone.

• Sort is Θ(N 3/2) (take CS170 for why!).
Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 12

Example of Shell’s Sort

#I #C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 120 0

0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 91 1

0 7 6 5 4 3 2 1 14 13 12 11 10 9 8 15 42 11

0 1 3 2 4 6 5 7 8 10 9 11 13 12 14 15 4 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 50

I: Inversions left.
C: Cumulative comparisons used to sort subsequences by insertion sort.

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 13

	CS61B Lecture #26
	Purposes of Sorting
	Some Definitions
	Classifications
	Sorting Arrays of Primitive Types in the Java Library
	Sorting Arrays of Reference Types in the Java Library
	Sorting Lists in the Java Library
	Examples
	Sorting by Insertion
	Inversions
	Shell's sort
	Example of Shell's Sort

