
CS61B Lecture #26

Today:

• Sorting algorithms: why?

• Insertion Sort.

• Inversions
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Purposes of Sorting

• Sorting supports searching

• Binary search standard example

• Also supports other kinds of search:

– Are there two equal items in this set?

– Are there two items in this set that both have the same value for
property X?

– What are my nearest neighbors?

• Used in numerous unexpected algorithms, such as convex hull (small-
est convex polygon enclosing set of points).

Last modified: Fri Apr 3 12:13:40 2020 CS61B: Lecture #26 2



Some Definitions

• A sorting algorithm (or sort) permutes (re-arranges) a sequence of
elements to brings them into order, according to some total order.

• A total order, �, is:

– Total: x � y or y � x for all x, y.

– Reflexive: x � x;

– Antisymmetric: x � y and y � x iff x = y.

– Transitive: x � y and y � z implies x � z.

• However, our orderings may treat unequal items as equivalent:

– E.g., there can be two dictionary definitions for the same word.
If we sort only by the word being defined (ignoring the defini-
tion), then sorting could put either entry first.

– A sort that does not change the relative order of equivalent en-
tries (compared to the input) is called stable.
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Classifications

• Internal sorts keep all data in primary memory.

• External sorts process large amounts of data in batches, keeping
what won’t fit in secondary storage (in the old days, tapes).

• Comparison-based sorting assumes only thing we know about keys is
their order.

• Radix sorting uses more information about key structure.

• Insertion sorting works by repeatedly inserting items at their ap-
propriate positions in the sorted sequence being constructed.

• Selection sorting works by repeatedly selecting the next larger
(smaller) item in order and adding it to one end of the sorted se-
quence being constructed.
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Sorting Arrays of Primitive Types in the Java Library

• The java library provides static methods to sort arrays in the class
java.util.Arrays.

• For each primitive type P other than boolean, there are

/** Sort all elements of ARR into non-descending order. */

static void sort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending

* order. */

static void sort(P[] arr, int first, int end) { ... }

/** Sort all elements of ARR into non-descending order,

* possibly using multiprocessing for speed. */

static void parallelSort(P[] arr) { ... }

/** Sort elements FIRST .. END-1 of ARR into non-descending

* order, possibly using multiprocessing for speed. */

static void parallelSort(P[] arr, int first, int end) {...}
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Sorting Arrays of Reference Types in the Java Library

• For reference types, C, that have a natural order (that is, that im-
plement java.lang.Comparable), we have four analogous methods
(one-argument sort, three-argument sort, and two parallelSort

methods):

/** Sort all elements of ARR stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(C[] arr) {...}
etc.

• And for all reference types, R, we have four more:
/** Sort all elements of ARR stably into non-descending order

* according to the ordering defined by COMP. */

static <R> void sort(R[] arr, Comparator<? super R> comp) {...}
etc.

• Q: Why the fancy generic arguments?
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Sorting Arrays of Reference Types in the Java Library

• For reference types, C, that have a natural order (that is, that im-
plement java.lang.Comparable), we have four analogous methods
(one-argument sort, three-argument sort, and two parallelSort

methods):

/** Sort all elements of ARR stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(C[] arr) {...}
etc.

• And for all reference types, R, we have four more:
/** Sort all elements of ARR stably into non-descending order

* according to the ordering defined by COMP. */

static <R> void sort(R[] arr, Comparator<? super R> comp) {...}
etc.

• Q: Why the fancy generic arguments?

• A: We want to allow types that have compareTo methods that apply
also to more general types.
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Sorting Lists in the Java Library

• The class java.util.Collections contains two methods similar to
the sorting methods for arrays of reference types:

/** Sort all elements of LST stably into non-descending

* order. */

static <C extends Comparable<? super C>> sort(List<C> lst) {...}
etc.

/** Sort all elements of LST stably into non-descending

* order according to the ordering defined by COMP. */

static <R> void sort(List<R> , Comparator<? super R> comp) {...}
etc.

• Also an instance method in the List<R> interface itself:

/** Sort all elements of LST stably into non-descending

* order according to the ordering defined by COMP. */

void sort(Comparator<? super R> comp) {...}
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Examples

• Assume:

import static java.util.Arrays.*;

import static java.util.Collections.*;

• Sort X, a String[] or List<String>, into non-descending order:

sort(X); // or ...

• Sort X into reverse order (Java 8):

sort(X, (String x, String y) -> { return y.compareTo(x); });
// or

sort(X, Collections.reverseOrder()); // or

X.sort(Collections.reverseOrder()); // for X a List

• Sort X[10], ..., X[100] in array or List X (rest unchanged):

sort(X, 10, 101);

• Sort L[10], ..., L[100] in list L (rest unchanged):

sort(L.sublist(10, 101));
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Sorting by Insertion

• Simple idea:

– starting with empty sequence of outputs.

– add each item from input, inserting into output sequence at right
point.

• Very simple, good for small sets of data.

• With vector or linked list, time for find + insert of one item is at
worst Θ(k), where k is # of outputs so far.

• This gives us a Θ(N 2) algorithm (worst case as usual).

• Can we say more?
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Inversions

• Can run in Θ(N) comparisons if already sorted.

• Consider a typical implementation for arrays:

for (int i = 1; i < A.length; i += 1) {

int j;

Object x = A[i];

for (j = i-1; j >= 0; j -= 1) {

if (A[j].compareTo(x) <= 0) /* (1) */

break;

A[j+1] = A[j]; /* (2) */

}

A[j+1] = x;

}

• #times (1) executes for each j ≈ how far x must move.

• If all items withinK of proper places, then takesO(KN) operations.

• Thus good for any amount of nearly sorted data.

• One measure of unsortedness: # of inversions: pairs that are out
of order (= 0 when sorted, N(N − 1)/2 when reversed).

• Each execution of (2) decreases inversions by 1.
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Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

• First sort subsequences of elements 2k − 1 apart:

– sort items #0, 2k − 1, 2(2k − 1), 3(2k − 1), . . ., then

– sort items #1, 1 + 2k − 1, 1 + 2(2k − 1), 1 + 3(2k − 1), . . ., then

– sort items #2, 2 + 2k − 1, 2 + 2(2k − 1), 2 + 3(2k − 1), . . ., then

– etc.

– sort items #2k − 2, 2(2k − 1)− 1, 3(2k − 1)− 1, . . .,

– Each time an item moves, can reduce #inversions by as much as
2k+1 − 3. [corrected 4/3]

• Now sort subsequences of elements 2k−1 − 1 apart:

– sort items #0, 2k−1 − 1, 2(2k−1 − 1), 3(2k−1 − 1), . . ., then

– sort items #1, 1 + 2k−1 − 1, 1 + 2(2k−1 − 1), 1 + 3(2k−1 − 1), . . .,

– ...

• End at plain insertion sort (20 = 1 apart), but with most inversions
gone.

• Sort is Θ(N 3/2) (take CS170 for why!).
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Example of Shell’s Sort

#I #C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 120 0

0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 15 91 1

0 7 6 5 4 3 2 1 14 13 12 11 10 9 8 15 42 11

0 1 3 2 4 6 5 7 8 10 9 11 13 12 14 15 4 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 50

I: Inversions left.
C: Cumulative comparisons used to sort subsequences by insertion sort.
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