C561B Lectures \#28

Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

	original:	19	0		-1	7		23	2	4	2
	heapified:	42	23		19	7		0	2		1
		23	7		19	-1		0	2		42
Heap part		19	7		2	-1		0		23	42
Sorted part		7	0		2	-1		19	92	23	42
		2	0		-1		7	19	193	23	42
		0	-1		2	2	7	19	92	23	42
		-1		0	2	2	7	19	19	23	42
			-1	0	2	2	7	19	92	23	42

Sorting By Selection: Initial Heapifying

- When covering heaps before, we created them by insertion in an initially empty heap.
- When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0): [corrected $4 / 3]$

```
void heapify(int[] arr) {
    int N = arr.length;
    for (int k = N / 2; k >= 0; k -= 1) {
        for (int p = k, c = 0; 2*p + 1 < N; p = c) {
        reheapify downward from p;
    }
    }
}
```

- At each iteration of the p loop, only the element at p might be out of order with respect to its descendants, so reheapifying downward will restore the subtree rooted at p to proper heap ordering.
- Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated $N / 2$ times.
- But instead of being $\Theta(N \lg N)$, it's just $\Theta(N)$.

Cost of Creating Heap

1 node $\times 3$ steps down
2 nodes $\times 2$ steps down
4 nodes $\times 1$ step down

- In general, worst-case cost for a heap with $h+1$ levels is

$$
\begin{aligned}
& 2^{0} \cdot h+2^{1} \cdot(h-1)+\ldots+2^{h-1} \cdot 1 \\
= & \left(2^{0}+2^{1}+\ldots+2^{h-1}\right)+\left(2^{0}+2^{1}+\ldots+2^{h-2}\right)+\ldots+\left(2^{0}\right) \\
= & \left(2^{h}-1\right)+\left(2^{h-1}-1\right)+\ldots+\left(2^{1}-1\right) \\
= & 2^{h+1}-1-h \\
\in & \Theta\left(2^{h}\right)=\Theta(N)
\end{aligned}
$$

- Alas, since the rest of heapsort still takes $\Theta(N \lg N)$, this does no \dagger improve its asymptotic cost.

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
- First break data into small enough chunks to fit in memory and sort.
- Then repeatedly merge into bigger and bigger sequences.
- Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage:

```
Data[] V = new Data[K];
For all i, set V[i] to the first data item of sequence i;
while there is data left to sort:
    Find k so that V[k] is smallest;
    Output V[k], and read new value into V[k] (if present).
```


Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

0 elements processed

1 element processed
$(3,5,9,15)$
4 elements processed

0: 0	$(3,5,9,15)$
1: 0	
2: $1 \cdot$	
3: 0	
	processed

2 elements processed

3 elements processed

6 elements processed

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything $>$ a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, \#inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

| 16 | 10 | 13 | 18 | -4 | -7 | 12 | -5 | 19 | 15 | 0 | 22 | 29 | 34 | -1^{\star} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | -4 | -5 | -7 | -1 | 18 | 13 | 12 | 10 | 19 | 15 | 0 | 22 | 29 | 34 | 16^{\star} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | -4 | -5 | -7 | -1 | 15 | 13 | 12^{\star} | 10 | 0 | 16 | 19^{\star} | 22 | 29 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | | | | | | | | | | | | | |
| -4 | -5 | -7 | -1 | 10 | 0 | 12 | 15 | 13 | 16 | 18 | 19 | 29 | 34 |

- Now everything is "close to" right, so just do insertion sort:

-7	-5	-4	-1	0	10	12	13	15	16	18	19	22	29	34

Performance of Quicksort

- Probabalistic time:
- If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: $\Theta\left(N^{2}\right)$.
- $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega\left(N^{2}\right)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\text {th }}$ smallest element in data.

- Obvious method: sort, select element \#k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
- Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
- Partition around some pivot, p, as in quicksort, arrange that pivo \dagger ends up at dividing line.
- Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
- If $m=k$, you're done: p is answer.
- If $m>k$, recursively select $k^{\text {th }}$ from left half of sequence.
- If $m<k$, recursively select $(k-m-1)^{\text {th }}$ from right half of sequence.

Selection Example

Problem: Find just item \#10 in the sorted version of array:
Initial contents:

51	60	21	-4	37	4	49	10	$40 *$	59	0	13	2	39	11	46	31
0																

Looking for \#10 to left of pivot 40:

13	31	21	-4	37	4^{*}	11	10	39	2	0	40	59	51	49	46	60
0																

Looking for \#6 to right of pivot 4:

| -4 | 0 | 2 | 4 | 47 | 37 | 11 | 10 | 39 | 21 | 31^{\star} | 40 | 59 | 51 | 49 | 46 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | | | | | | | | | | | | | | | | |

Looking for \#1 to right of pivot 31:

-4	0	2	4	21	13	11	10	31	39	37	40	59	51	49	46	60
9																

Just two elements; just sort and return \#1:

-4	0	2	4	21	13	11	10	31	37	39	40	59	51	49	46	60
9																

Result: 39

Selection Performance

- For this algorithm, if m roughly in middle each time, cost is

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N=1, \\
N+C(N / 2), & \text { otherwise. }\end{cases} \\
& =N+N / 2+\ldots+1 \\
& =2 N-1 \in \Theta(N)
\end{aligned}
$$

- But in worst case, get $\Theta\left(N^{2}\right)$, as for quicksort.
- By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

