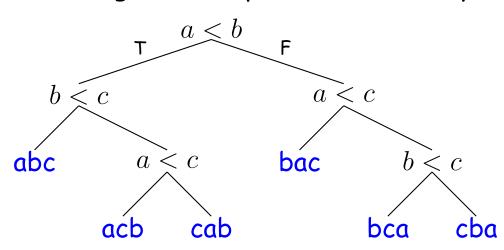
CS61B Lectures #29

Today:


- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Better than N Ig N?

- Can prove that if all you can do to keys is compare them, then sorting must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data could be scrambled.
- ullet Therefore, your program must be prepared to do N! different combinations of data-moving operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if-tests in your program, since those determine what move gets moved where (we're assuming that comparisons are 2-way).

Decision Tree Height \propto Sorting time

Necessary Choices

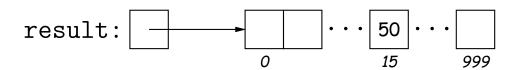
- Since each if-test goes two ways, number of possible different outcomes for k if-tests is 2^k .
- Thus, need enough tests so that $2^k \geq N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$N! \in \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right),$$

$$\lg(N!) \in 1/2(\lg 2\pi + \lg N) + N\lg N - N\lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right)$$

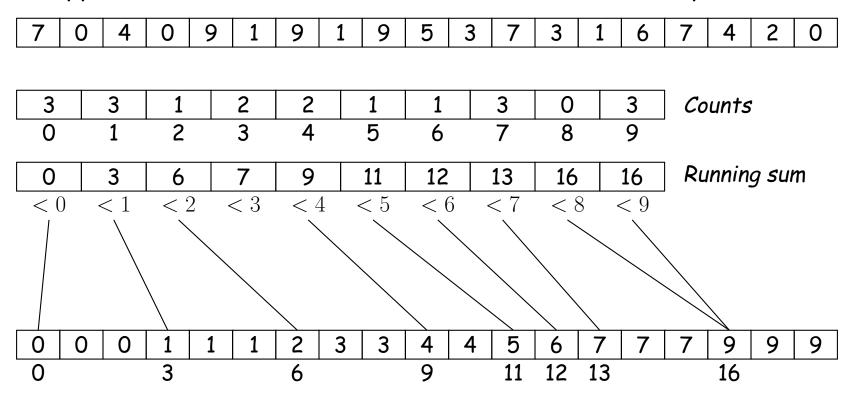
$$= \Theta(N\lg N)$$

ullet This tells us that k, the worst-case number of tests needed to sort N items by comparison sorting, is in $\Omega(N \lg N)$: there must be cases where we need (some multiple of) $N \lg N$ comparisons to sort Nthings.

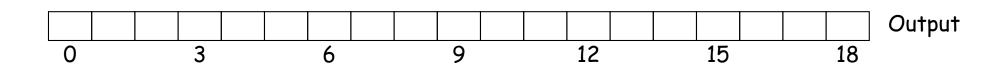

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique is distribution sorting:
 - Put the integers into N buckets; integer p goes to bucket $\lfloor p/k \rfloor$.
 - At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- **E.g.**, k = 2, N = 10:

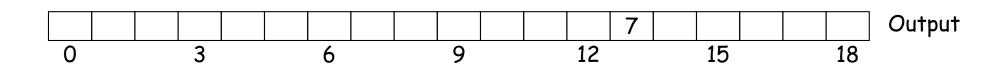
ullet Now insertion sort is fast. Putting in buckets takes time $\Theta(N)$, and insertion sort takes $\Theta(kN)$. When k is fixed (constant), we have sorting in time $\Theta(N)$.


Distribution Counting

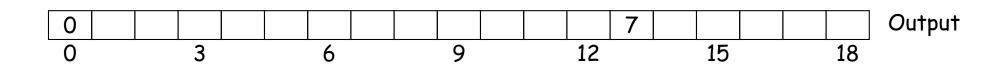
- Another technique: count the number of items < 1, < 2, etc.
- If $M_p = \#$ items with value < p, then in sorted order, the $j^{\dagger h}$ item with value p must be item $\#M_p + j$.
- ullet Suppose that one has a set of numbers in the range [0, 1000) and that exactly 15 of them are less than 50, which is also in the set. Then the result of sorting will look like this: [corrected 4/7]


- ullet In other words, the count of numbers < k gives the index of k in the output array.
- \bullet If there are N items in the range 0..M-1, gives another linear $time - \Theta(M+N)$)—algorithm (We include M and N here to allow for both duplicates and for cases where $M \gg N$.)
- [Postscript on notation: the notations [A, B], (A, B), [A, B), and (A, B] above refer to *intervals*. The use of parentheses vs. square brackets reflects the distinction between open and closed intervals. Thus $x \in [A, B]$ iff $A \le x \le B$, while $x \in [A, B)$ iff $A \le x < B$, etc.]

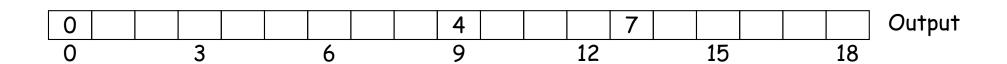
Suppose all items are between 0 and 9 as in this example:

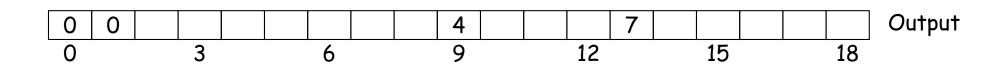

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...
- ... which tells us where to put each key:
- ullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

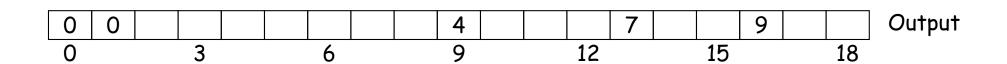
7 (0 4	0	9 1	9	1	9	5	3	7	3	1	6	7	4	2	0]	
3	3	1	2	2		1	1		3	0		3	Co	unts	;			
0	1	2	3	4		5	6		7	8		9						
0	3	6	7	9		11	12		13	16		16	RL	ınnin	g su	m of	Count	5
0	1	2	3	4		5	6		7	8	•	9	•					
0	3	6	7	9		11	12		13	16		16	Ne	ext p	osit	ions		
0	1	2	3	4		5	6	•	7	8	•	9	•					

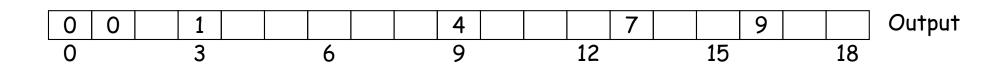


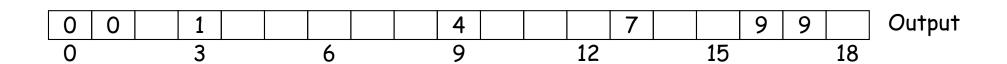
Last modified: Tue Apr 7 14:20:47 2020

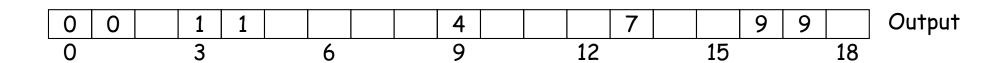

7 () 4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3	3	1		2	2		1	1		3	0		3	Co	unts	5		
0	1	2	•	3	4	·	5	6		7	8	•	9					
0	3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	1	2	•	3	4	·	5	6		7	8	•	9					
0	3	6		7	9		11	12		14	16		16	Ne	ext p	oosit	ions	
0	1	2	•	3	4	•	5	6	,	7	8	•	9	•				

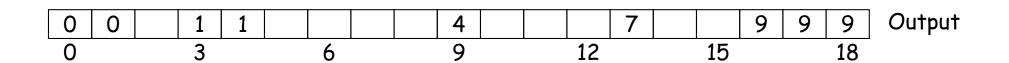

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2		3	4	•	5	6		7	8		9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9	_				
1		3	6		7	9		11	12		14	16		16	Ne	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	_				

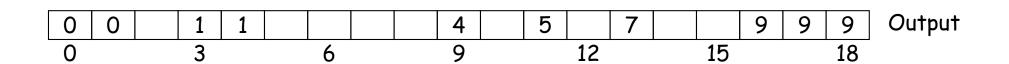

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3	3	}	1		2	2		1	1		3	0		3	Co	unts	3		
0	1		2	•	3	4	•	5	6	·	7	8	•	9					
0	3	}	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	1	,	2	•	3	4	•	5	6	•	7	8	•	9	•				
1	3	}	6		7	10		11	12		14	16		16	Ne	ext p	oosit	ions	
0	1		2	•	3	4	•	5	6	•	7	8	•	9	•				

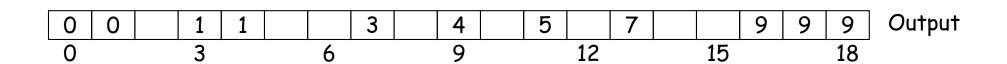

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0	•	1	2		3	4	•	5	6	•	7	8	•	9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9					
2		3	6		7	10		11	12		14	16		16	Ne	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	-				

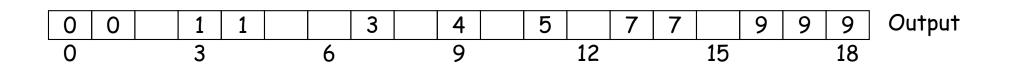

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0	•	1	2		3	4	•	5	6	•	7	8	•	9	•				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2		3	4	•	5	6	•	7	8	•	9	-				
2		3	6		7	10		11	12		14	16		17	Ne	ext p	oosit	ions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•				

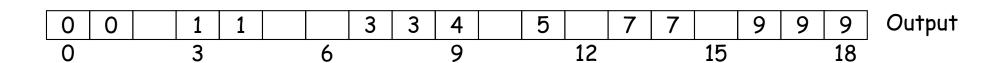

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0		1	2	•	3	4		5	6	•	7	8	•	9	•				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•				
2		4	6		7	10		11	12		14	16		17	Ne	ext p	oosit	ions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•				

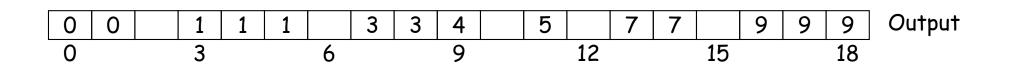

7 () 4	0	9 1	9	1 9	5	3	7	3	1	6	7	4	2	0		
												_					
3	3	1	2	2	1	1	3		0		3	Co	unts	3			
0	1	2	3	4	5	6	7	,	8		9	_					
0	3	6	7	9	11	12	13	3	16		16	RL	ınnin	g su	m of	Count	5
0	1	2	3	4	5	6	7	,	8		9	•					
2	4	6	7	10	11	12	14	4	16		18	Ne	ext p	osit	ions		
0	1	2	3	4	5	6	7	,	8		9	•					

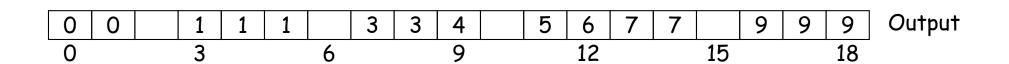

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0	•	1	2	•	3	4	•	5	6		7	8	•	9					
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9	_				
2		5	6		7	10		11	12		14	16		18	Ne	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	_				

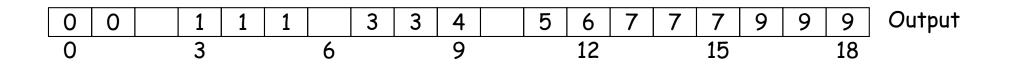

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2	•	3	4		5	6		7	8		9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9	_				
2		5	6		7	10		11	12		14	16		19	Ne	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	_				

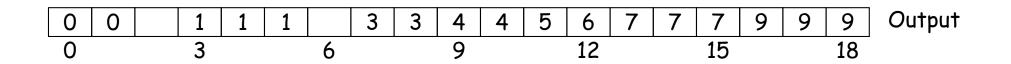

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2		3	4		5	6		7	8		9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9					
2		5	6		7	10		12	12		14	16		19	Ne	ext p	osit	rions	
0		1	2		3	4		5	6		7	8		9	_				

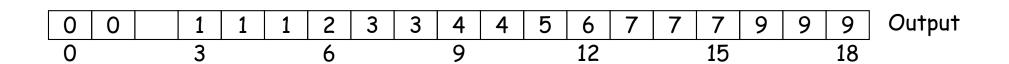

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2		3	4		5	6		7	8		9	•				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9					
2		5	6		8	10		12	12		14	16		19	Ne	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	-				

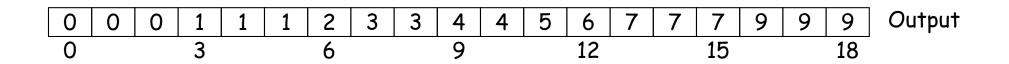

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2		3	4		5	6		7	8		9	•				
0		3	6		7	9		11	12		13	16		16	Ru	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9					
2		5	6		8	10		12	12		15	16		19	Ne	ext p	osit	rions	
0		1	2		3	4		5	6		7	8		9	_				


7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0	•	1	2		3	4		5	6		7	8		9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2		3	4		5	6	·	7	8		9	•				
2		5	6		9	10		12	12		15	16		19	Ne	ext p	oosit	ions	
0	•	1	2		3	4		5	6		7	8		9	•				


7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0]
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0	•	1	2	•	3	4		5	6	·	7	8	•	9	•				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2	•	3	4		5	6	•	7	8	•	9	-				
2		6	6		9	10		12	12		15	16		19	Ne	ext p	oosit	rions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-				


7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0	•	1	2	•	3	4		5	6	·	7	8	•	9	•				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	_				
2		6	6		9	10		12	13		15	16		19	Ne	ext p	oosit	ions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•				


7 (0 4	0	9 1	9	1	9	5	3	7	3	1	6	7	4	2	0	
													_				
3	3	1	2	2		1	1		3	0		3	Со	unts	•		
0	1	2	3	4		5	6		7	8		9	-				
0	3	6	7	9		11	12		13	16		16	Ru	nnin	g su	m of	Counts
0	1	2	3	4	•	5	6	•	7	8	•	9	•				
2	6	6	9	10		12	13		16	16		19	Ne	ext p	osit	ions	
0	1	2	3	4	•	5	6	•	7	8	•	9	•				


7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	3		
0		1	2	•	3	4	•	5	6	•	7	8	•	9					
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0		1	2	•	3	4		5	6	•	7	8	•	9	•				
2		6	6		9	11		12	13		16	16		19	No	ext p	oosit	ions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-				

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	;		
0		1	2		3	4		5	6		7	8	-	9	-				
0		3	6		7	9		11	12		13	16		16	RL	ınnin	g su	m of	Counts
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	•				
2		6	7		9	11		12	13		16	16		19	Ne	ext p	oosit	ions	
0	•	1	2	•	3	4	•	5	6	•	7	8	•	9	-				

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0	
3		3	1		2	2		1	1		3	0		3	Co	unts	5		
0		1	2		3	4		5	6		7	8		9	-				
0		3	6		7	9		11	12		13	16		16	Rι	ınnin	g su	m of	Counts
0		1	2		3	4		5	6		7	8		9					
3		6	7		9	11		12	13		16	16		19	No	ext p	osit	ions	
0		1	2		3	4		5	6		7	8		9	_				

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / \star cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- ullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N\lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort would take $B = N \lg N$ time with minimal-length keys.
- On the other hand, must work to get good constant factors with radix sort

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- ullet Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- \bullet Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.