CS61B Lecture \#33

Today's Readings: Graph Structures: DSIJ, Chapter 12

Why Graphs?

- For expressing non-hierarchically related items
- Examples:
- Networks: pipelines, roads, assignment problems
- Representing processes: flow charts, Markov models
- Representing partial orderings: PERT charts, makefiles
- As we've seen, in representing connected structures as used in Git.

Some Terminology

- A graph consists of
- A set of nodes (aka vertices)
- A set of edges: pairs of nodes.
- Nodes with an edge between are adjacent.
- Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set $V=\left\{v_{0}, \ldots\right\}$, and edge set E.
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph-DAG.

Some Pictures

Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g., all the following are the same graph:

Examples of Use

- Edge $=$ Connecting road, with length .

- Edge $=$ Must be completed before; Node label = time to complete.

- Edge $=$ Begat

More Examples

- Edge = some relationship

- Edge $=$ next state might be (with probability)

- Edge $=$ next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input".)

Representation

- Often useful to number the nodes, and use the numbers in edges.
- Edge list representation: each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).

- Edge sets: Collection of all edges. For graph above:

$$
\{(1,2),(1,3),(2,3)\}
$$

- Adjacency matrix: Represent connection with matrix entry:
$\left.\begin{array}{c} \\ 1 \\ 2 \\ 3\end{array} \begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

Treat 0 as the root and do recursive traversal down the two edges out of each node: $\Theta\left(2^{N}\right)$ operations!

- So typically try to visit each node constant \# of times (e.g., once).

Recursive Depth-First Traversal of a Graph

- Can fix looping and combinatorial problems using the "bread-crumb" method used in earlier lectures for a maze.
- That is, mark nodes as we traverse them and don't traverse previously marked nodes.
- Makes sense to talk about preorder and postorder, as for trees.

Recursive Depth-First Traversal of a Graph (II)

- We are often interested in traversing all nodes of a graph, not just those reachable from one node.
- So we can repeat the procedure as long as there are unmarked nodes.

```
void preorderTraverse(Graph G) {
    clear all marks;
    for (v \in nodes of G) {
        preorderTraverse(G, v);
    }
}
void postorderTraverse(Graph G) {
    clear all marks;
    for (v \in nodes of G) {
        postorderTraverse(G, v);
    }
}
```


Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

- That is, order the nodes v_{0}, v_{1}, \ldots such that v_{k} is never reachable from $v_{k^{\prime}}$ if $k^{\prime}>k$.
- Gmake does this. Also PERT charts.

Possible Orderings

$$
\begin{array}{lll}
A & C & C \\
C & A & G \\
B & F & A \\
D & D & A \\
F & B & B \\
E & G & D \\
G & E & E \\
& & H \\
H & H &
\end{array}
$$

Sorting and Depth First Search

- Observation: Suppose we reverse the links on our graph.
- If we do a recursive DFS on the reverse graph, starting from node H, for example, we will find all nodes that must come before H.
- When the search reaches a node in the reversed graph and there are no successors, we know that it is safe to put that node first.
- In general, a postorder traversal of the reversed graph visits nodes only after all predecessors have been visited.

Numbers show postorder traversal order starting from G: everything that must come before G.

General Graph Traversal Algorithm

```
COLLECTION_OF_VERTICES fringe;
fringe = INITIAL_COLLECTION;
while (!fringe.isEmpty()) {
    Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM();
    if (!MARKED(v)) {
        MARK(v);
        VISIT(v);
        For each edge(v,w) {
            if (NEEDS_PROCESSING(w))
                Add w to fringe;
        }
    }
}
```

Replace COLLECTION_OF_VERTICES, INITIAL_COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting nodes further from start first.

```
// Red sections are specializations of general algorithm
Stack<Vertex> fringe;
fringe = stack containing {v};
while (!fringe.isEmpty()) {
    Vertex v = fringe.pop();
    if (!marked(v)) {
        mark(v);
        VISIT(v);
        For each edge(v,w) {
            if (!marked(w))
                fringe.push(w);
        }
    }
}
```


Depth-First Traversal Illustrated

Topological Sort in Action

Output: []

$[A, C, B, F]$

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, s, to all nodes.

- "Shortest" = sum of weights along path is smallest.
- For each node, keep estimated distance from s, \ldots
- ... and of preceding node in shortest path from s.

```
PriorityQueue<Vertex> fringe;
For each node v { v.dist() = \infty; v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge(v,w) {
        if (v.dist() + weight(v,w) < w.dist())
            { w.dist() = v.dist() + weight(v,w) ; w.back() = v; }
    }
}
```


Example

----- Shortest-path tree
(X|d processed node at distance d
(y|d) node in fringe at distance d

