
Lecture #37

Today: Side excursions into nitty-gritty stuff: Threads, storage man-
agement.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 1

Threads

• So far, all our programs consist of single sequence of instructions.

• Each such sequence is called a thread (for “thread of control”) in
Java.

• Java supports programs containing multiple threads, which (concep-
tually) run concurrently.

• Actually, on a uniprocessor, only one thread at a time actually runs,
while others wait, but this is largely invisible.

• To allow program access to threads, Java provides the type Thread

in java.lang. Each Thread contains information about, and controls,
one thread.

• Simultaneous access to data from two threads can cause chaos, so
are also constructs for controlled communication, allowing threads
to lock objects, to wait to be notified of events, and to interrupt
other threads.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 2

But Why?

• Typical Java programs always have > 1 thread: besides the main
program, others clean up garbage objects, receive signals, update
the display, other stuff.

• When programs deal with asynchronous events, is sometimes conve-
nient to organize into subprograms, one for each independent, re-
lated sequence of events.

• Threads allow us to insulate one such subprogram from another.

• GUIs often organized like this: application is doing some compu-
tation or I/O, another thread waits for mouse clicks (like ‘Stop’),
another pays attention to updating the screen as needed.

• Large servers like search engines may be organized this way, with
one thread per request.

• And, of course, sometimes we do have a real multiprocessor.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 3

Java Mechanics

• To specify the actions “walking” and “chewing gum”:

class Chewer1 implements Runnable {

public void run()

{ while (true) ChewGum(); }

}

class Walker1 implements Runnable {

public void run()

{ while (true) Walk(); }

}

// Walk and chew gum

Thread chomp

= new Thread(new

Chewer1());

Thread clomp

= new Thread(new

Walker1());

chomp.start(); clomp.start();

• Concise Alternative (uses fact that Thread implements Runnable):

class Chewer2 extends Thread {

public void run()

{ while (true) ChewGum(); }

}

class Walker2 extends Thread {

public void run()

{ while (true) Walk(); }

}

Thread chomp = new Chewer2(),

clomp = new Walker2();

chomp.start();

clomp.start();

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 4

Avoiding Interference

• When one thread has data for another, one must wait for the other
to be ready.

• Likewise, if two threads use the same data structure, generally only
one should modify it at a time; other must wait.

• E.g., what would happen if two threads simultaneously inserted an
item into a linked list at the same point in the list?

• A: Both could conceivably execute

p.next = new ListCell(x, p.next);

with the same values of p and p.next; one insertion is lost.

• Can arrange for only one thread at a time to execute a method on a
particular object with either of the following equivalent definitions:

void f(...) {

synchronized (this) {

body of f
}

}

synchronized void f(...) {

body of f
}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 5

Communicating the Hard Way

• Communicating data is tricky: the faster party must wait for the
slower.

• Obvious approaches for sending data from thread to thread don’t
work:
class DataExchanger {

Object value = null;

Object receive() {

Object r; r = null;

while (r == null)

{ r = value; }

value = null;

return r;

}

void deposit(Object data) {

while (value != null) { }

value = data;

}

}

DataExchanger exchanger

= new DataExchanger();

// thread1 sends to thread2 with

exchanger.deposit("Hello!");

// thread2 receives from thread1 with

msg = (String) exchanger.receive();

• BAD: One thread can monopolize machine while waiting; two threads
executing deposit or receive simultaneously cause chaos.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 6

Primitive Java Facilities

• wait method on Object makes thread wait (not using processor) un-
til notified by notifyAll, unlocking the Object while it waits.

• Example, ucb.util.mailbox has something like this (simplified):

interface Mailbox {

void deposit(Object msg) throws InterruptedException;

Object receive() throws InterruptedException;

}

class QueuedMailbox implements Mailbox {

private List<Object> queue = new LinkedList<Object>();

public synchronized void deposit(Object msg) {

queue.add(msg);

this.notifyAll(); // Wake any waiting receivers

}

public synchronized Object receive() throws InterruptedException {

while (queue.isEmpty()) wait();

return queue.remove(0);

}

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 7

Message-Passing Style

• Use of Java primitives very error-prone. Wait until CS162.

• Mailboxes are higher-level, and allow the following program struc-
ture:

Mailbox
#1

Mailbox
#2

Player
#1

Player
#2

deposit

receive deposit

receive

information flow through Mailbox #1

information flow through Mailbox #2

• Where each Player is a thread that looks like this:

while (! gameOver()) {

if (myMove())

outBox.deposit(computeMyMove(lastMove));

else

lastMove = inBox.receive();

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 8

More Concurrency

• Previous example can be done other ways, but mechanism is very
flexible.

• E.g., suppose you want to think during opponent’s move:

while (!gameOver()) {

if (myMove())

outBox.deposit(computeMyMove(lastMove));

else {

do {

thinkAheadALittle();

lastMove = inBox.receiveIfPossible();

} while (lastMove == null);

}

• receiveIfPossible (written receive(0) in our actual package) doesn’t
wait; returns null if no message yet, perhaps like this:

public synchronized Object receiveIfPossible()

throws InterruptedException {

if (queue.isEmpty())

return null;

return queue.remove(0);

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 9

Coroutines

• A coroutine is a kind of synchronous thread that explicitly hands
off control to other coroutines so that only one executes at a time,
like Python generators. Can get similar effect with threads and
mailboxes.

• Example: recursive inorder tree iterator:

class TreeIterator extends Thread {

Tree root; Mailbox r;

TreeIterator(Tree T, Mailbox r) {

this.root = T; this.dest = r;

}

public void run() {

traverse(root);

r.deposit(End marker);
}

void traverse(Tree t) {

if (t == null) return;

traverse(t.left);

r.deposit(t.label);

traverse(t.right);

}

}

void treeProcessor(Tree T) {

Mailbox m = new QueuedMailbox();

new TreeIterator(T, m).start();

while (true) {

Object x = m.receive();

if (x is end marker)
break;

do something with x;

}

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 10

Use In GUIs

• Jave runtime library uses a special thread that does nothing but
wait for events like mouse clicks, pressed keys, mouse movement,
etc.

• You can designate an object of your choice as a listener; which
means that Java’s event thread calls a method of that object when-
ever an event occurs.

• As a result, your program can do work while the GUI continues to
respond to buttons, menus, etc.

• Another special thread does all the drawing. You don’t have to be
aware when this takes place; just ask that the thread wake up when-
ever you change something.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 11

Highlights of a GUI Component

/** A widget that draws multi-colored lines indicated by mouse. */

class Lines extends JComponent implements MouseListener {

private List<Point> lines = new ArrayList<Point>();

Lines() { // Main thread calls this to create one

setPreferredSize(new Dimension(400, 400));

addMouseListener(this);

}

public synchronized void paintComponent(Graphics g) { // Paint thread

g.setColor(Color.white); g.fillRect(0, 0, 400, 400);

int x, y; x = y = 200;

Color c = Color.black;

for (Point p : lines)

g.setColor(c); c = chooseNextColor(c);

g.drawLine(x, y, p.x, p.y); x = p.x; y = p.y;

}

}

public synchronized void mouseClicked(MouseEvent e) // Event thread

{ lines.add(new Point(e.getX(), e.getY())); repaint(); }

...

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 12

Interrupts

• An interrupt is an event that disrupts the normal flow of control of
a program.

• In many systems, interrupts can be totally asynchronous, occurring
at arbitrary points in a program, the Java developers considered
this unwise; arranged that interrupts would occur only at controlled
points.

• In Java programs, one thread can interrupt another to inform it
that something unusual needs attention:

otherThread.interrupt();

• But otherThread does not receive the interrupt until it waits: meth-
ods wait, sleep (wait for a period of time), join (wait for thread to
terminate), and mailbox deposit and receive.

• Interrupt causes these methods to throw InterruptedException,
so typical use is like this:

try {

msg = inBox.receive();

} catch (InterruptedException e) { HandleEmergency(); }

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 13

Remote Mailboxes (A Side Excursion)

• RMI: Remote Method Interface allows one program to refer to ob-
jects in another program.

• We use it to allow mailboxes in one program be received from or
deposited into in another.

• To use this, you define an interface to the remote object:

import java.rmi.*;

interface Mailbox extends Remote {

void deposit(Object msg)

throws InterruptedException, RemoteException;

Object receive()

throws InterruptedException, RemoteException;

...

}

• On machine that actually will contain the object, you define

class QueuedMailbox ... implements Mailbox {

Same implementation as before, roughly

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 14

Remote Objects Under the Hood

// On machine #1: // On Machine #2:

Mailbox outBox Mailbox inBox

= new QueuedMailbox(); = get outBox from machine #1

outBox:

a
QueuedMailbox
queue: [’Hi’,...]

a
Mailbox
stub

inBox:

receive()

receive() request (I/O)

response ’Hi’ (I/O)

• Because Mailbox is an interface, hides fact that on Machine #2
doesn’t actually have direct access to it.

• Requests for method calls are relayed by I/O to machine that has
real object.

• Any argument or return type OK if it also implements Remote or
can be serialized—turned into stream of bytes and back, as can
primitive types and String.

• Because I/O involved, expect failures, hence every method can throw
RemoteException (subtype of IOException).

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 15

Scope and Lifetime

• Scope of a declaration is portion of program text to which it applies
(is visible).

– Need not be contiguous.

– In Java, is static: independent of data.

• Lifetime or extent of storage is portion of program execution dur-
ing which it exists.

– Always contiguous

– Generally dynamic: depends on data

• Classes of extent:

– Static: entire duration of program

– Local or automatic: duration of call or block execution (local vari-
able)

– Dynamic: From time of allocation statement (new) to dealloca-
tion, if any.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 16

Explicit vs. Automatic Freeing

• Java has no explicit means to free dynamic storage.

• However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful()

{

IntList c = new IntList(3, new IntList(4, null));

return c.tail;

// variable c now deallocated, so no way

// to get to first cell of list

}

• At this point, Java runtime, like Scheme’s, recycles the object c

pointed to: garbage collection.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 17

Under the Hood: Allocation

• Java pointers (references) are represented as integer addresses.

• Corresponds to machine’s own practice.

• In Java, cannot convert integers ↔ pointers,

• But crucial parts of Java runtime implemented in C, or sometimes
machine code, where you can.

• Crude allocator in C:

char store[STORAGE SIZE]; // Allocated array

size t remainder = STORAGE SIZE;

/** A pointer to a block of at least N bytes of storage */

void* simpleAlloc(size t n) { // void*: pointer to anything

if (n > remainder) ERROR();

remainder = (remainder - n) & ~0x7; // Make multiple of 8

return (void*) (store + remainder);

}

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 18

Example of Storage Layout: Unix

Stack
(local)

Unallocated

Heap
(new)

Static
storage

Executable
codeAddress 0

• OS gives way to turn chunks of unallocated region into heap.

• Happens automatically for stack.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 19

Explicit Deallocating

• C/C++ normally require explicit deallocation, because of

– Lack of run-time information about what is array

– Possibility of converting pointers to integers.

– Lack of run-time information about unions:

union Various {
int Int;

char* Pntr;

double Double;

} X; // X is either an int, char*, or double

• Java avoids all three problems; automatic collection possible.

• Explicit freeing can be somewhat faster, but rather error-prone:

– Memory corruption

– Memory leaks

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 20

Free Lists

• Explicit allocator grabs chunks of storage from OS and gives to
applications.

• Or gives recycled storage, when available.

• When storage is freed, added to a free list data structure to be
recycled.

• Used both for explicit freeing and some kinds of automatic garbage
collection.

The Heap

Variables
(visible to program)

x y

Free List

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 21

Free List Strategies

• Memory requests generally come in multiple sizes.

• Not all chunks on the free list are big enough, and one may have to
search for a chunk and break it up if too big.

• Various strategies to find a chunk that fits have been used:

– Sequential fits:

∗ Link blocks in LIFO or FIFO order, or sorted by address.

∗ Coalesce adjacent blocks.

∗ Search for first fit on list, best fit on list, or next fit on list
after last-chosen chunk.

– Segregated fits: separate free lists for different chunk sizes.

– Buddy systems: A kind of segregated fit where some newly ad-
jacent free blocks of one size are easily detected and combined
into bigger chunks.

• Coalescing blocks reduces fragmentation of memory into lots of lit-
tle scattered chunks.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 22

Garbage Collection: Reference Counting

• Idea: Keep count of number of pointers to each object. Release
when count goes to 0.

X: 1 1 1

1 A 1 B 1 C

Y:

X: 1 2 1

1 A 1 B 1 C

Y:

Y = X.tail;

X: 0 3 1

1 A 1 B 1 C

Y:

X = Y;

X: 2 1

0 A 1 B 1 C

Y:

X: 2 1

Y:

. . . etc., until:

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 23

Garbage Collection: Mark and Sweep

Roots (locals + statics)

5 E B G

D
7

C
42
A

F

1. Traverse and mark
graph of objects.

2. Sweep through
memory, freeing
unmarked objects.

Before sweep: 42
A

D
B*

G F
C

A
D*

7 G D
E* F

C
G*

E

After sweep: D
B

G
D

7 G D
E G

E

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 24

Cost of Mark-and-Sweep

• Mark-and-sweep algorithms don’t move any exisiting objects—pointers
stay the same.

• The total amount of work depends on the amount of memory swept—
i.e., the total amount of active (non-garbage) storage + amount of
garbage. Not necessarily a big hit: the garbage had to be active at
one time, and hence there was always some “good” processing in the
past for each byte of garbage scanned.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 25

Copying Garbage Collection

• Another approach: copying garbage collection takes time propor-
tional to amount of active storage:

– Traverse the graph of active objects breadth first, copying them
into a large contiguous area (called “to-space”).

– As you copy each object, mark it and put a forwarding pointer
into it that points to where you copied it.

– The next time you have to copy an already marked object, just
use its forwarding pointer instead.

– When done, the space you copied from (“from-space”) becomes
the next to-space; in effect, all its objects are freed in constant
time.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 26

Copying Garbage Collection Illustrated

Roots

B
5

E

from: 42
A

D
B

G F
C

A
D

7 G D
E F

C
G

E
B: Old object
B ’: New object
*: marked

to:

(a)

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A
D

7 G E ’
E* F

C
G

E

to: D
B ’

G D
E ’(b)

forwarding pointers

Copy roots

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D
E ’ D ’

7 G
G ’

E

(c)
Copy from to-space
in (b).
Only D is new

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D ’
E ’ D ’

7 G ’
G ’

E ’

(d)
Copy from to-space
in (c).
No new objects

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 27

Most Objects Die Young: Generational Collection

• Most older objects stay active, and need not be collected.

• Would be nice to avoid copying them over and over.

• Generational garbage collection schemes have two (or more) from
spaces: one for newly created objects (new space) and one for
“tenured” objects that have survived garbage collection (old space).

• A typical garbage collection collects only in new space, ignores point-
ers from new to old space, and moves objects to old space.

• As roots, uses usual roots plus pointers in old space that have changed
(so that they might be pointing to new space).

• When old space full, collect all spaces.

• This approach leads to much smaller pause times in interactive sys-
tems.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 28

There’s Much More

• These are just highlights.

• Lots of work on how to implement these ideas efficiently.

• Distributed garbage collection: What if objects scattered over many
machines?

• Real-time collection: where predictable pause times are important,
leads to incremental collection, doing a little at a time.

Last modified: Sun Nov 24 13:56:28 2019 CS61B: Lecture #37 29

	Lecture #37
	Threads
	But Why?
	Java Mechanics
	Avoiding Interference
	Communicating the Hard Way
	Primitive Java Facilities
	Message-Passing Style
	More Concurrency
	Coroutines
	Use In GUIs
	Highlights of a GUI Component
	Interrupts
	Remote Mailboxes (A Side Excursion)
	Remote Objects Under the Hood
	Scope and Lifetime
	Explicit vs. Automatic Freeing
	Under the Hood: Allocation
	Example of Storage Layout: Unix
	Explicit Deallocating
	Free Lists
	Free List Strategies
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Cost of Mark-and-Sweep
	Copying Garbage Collection
	Copying Garbage Collection Illustrated
	Most Objects Die Young: Generational Collection
	There's Much More

