
Lecture #39: Compression

Credits: This presentation is largely taken from CS61B lectures by
Josh Hug.
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Compression and Git

• Git creates a new object in the repository each time a changed file
or directory is committed.

• Things can get crowded as a result.

• To save space, it compresses each object.

• Every now and then (such as when sending or receiving from another
repository), it packs objects together into a single file: a “packfile.”

• Besides just sticking the files together, uses a technique called
delta compression.
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Delta Compression

• Typically, there will be many versions of a file in a Git repository:
the latest, and previous edits of it, each in different commits.

• Git doesn’t keep track explicitly of which file came from where,
since that’s hard in general:

– What if a file is split into two, or two are spliced together?

• But, can guess that files with same name and (roughly) same size in
two commits are probably versions of the same file.

• When that happens, store one of them as a pointer to the other,
plus a list of changes.
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Delta Compression (II)

• So, store two versions
V1 V2

My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration. I shall tell him
I’ve recovered my forgotten moral
senses,

My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I’ve recovered my
forgotten moral senses,
and don’t give twopence halfpenney
for any consequences.

as
V1 V2

[Fetch 1st 6 lines from V2] My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I’ve recovered my
forgotten moral senses,
and don’t give twopence halfpenney
for any consequences.
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Two Unix Compression Programs

$ gzip -k lect37.pic.in # The GNU version of ZIP

$ bzip2 -k lect37.pic.in # Another compression program

$ ls -l lect37.pic*

# Size

# (bytes)

-rw-r--r-- 1 cs61b cs61b 31065 Apr 27 23:36 lect37.pic.in

-rw-r--r-- 1 cs61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size

-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

$ gzip -k lect37.pdf

$ ls -l lect37.pdf*

-rw-r--r-- 1 cs61b cs61b 124665 Mar 30 13:46 lect37.pdf

-rw-r--r-- 1 cs61b cs61b 101125 Mar 30 13:46 lect37.pdf.gz # Roughly 81% size

$ gunzip < lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress

$ diff lect37.pic.in lect37.pic.in.ungzip

$ # No difference from original (lossless)

$ gzip < lect37.pic.in.gz > lect37.pic.in.gz.gz

$ ls -l lect37.pic*gz

-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

-rw-r--r-- 1 cs61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz
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Compression and Decompression

• A compression algorithm converts a stream of symbols into another,
smaller stream.

• It is called lossless if the algorithm is invertible (no information
lost).

• A common symbol is the bit:

00110000001100010011001000110011 Compression 0000000100100011

0000000100100011 Decompression 00110000001100010011001000110011

• Here, we simply replaced the 8-bit ASCII bit sequences for digits
with 4-bit (binary-coded decimal).

• Call these 4-bit sequences codewords, which we associate with the
symbols in the original, uncompressed text.

• Can do better than 50% compression with English text.
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Example: Morse Code

• Compact, simple to transmit.

• Actually use three symbols:
dih, dah, and pause.

Pauses go between codewords.

A
B
C
D
E
F
G
H
I
J
K

L
M
N
O

P
Q

R
S
T

U
V
W
X
Y
Z

0
1
2
3

4
5
6
7
8
9
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Prefix Free Codes

• Morse code needs pauses between codewords to prevent ambigui-
ties.

• Otherwise, could be DEATH, BABE, or BATH.

• The problem is that Morse code allows many codewords to be pre-
fixes of other ones, so that it’s difficult to know when one has come
to the end of one.

• Alternative is to devise prefix-free codes, in which no codeword is
a prefix of another.

• Then one always knows when a codeword ends.
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Prefix-Free Examples

Encoding A

space 1

E 01

T 001

A 0001

O 00001

I 000001

. . .

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .

• For example, “I ATE“ is unambiguously

0000011000100101 in Encoding A, or

110011110101000010 in Encoding B.

• What data structures might you use to. . .
Encode? Decode?
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Prefix-Free Examples

Encoding A

space 1

E 01

T 001

A 0001

O 00001

I 000001

. . .

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .

• For example, “I ATE“ is unambiguously

0000011000100101 in Encoding A, or

110011110101000010 in Encoding B.

• What data structures might you use to. . .
Encode? Ans: HashMap or array Decode?
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Prefix-Free Examples

Encoding A

space 1

E 01

T 001

A 0001

O 00001

I 000001

. . .

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .

• For example, “I ATE“ is unambiguously

0000011000100101 in Encoding A, or

110011110101000010 in Encoding B.

• What data structures might you use to. . .
Encode? Ans: HashMap or array Decode? Ans: Trie
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Shannon-Fano Coding

Symbol Frequency Encoding

R 0.35

U 0.17

D 0.17

O 0.16

P 0.15

R U

D

O

P

• Count frequencies of all characters in text to be compressed.

• Break grouped characters into two groups of roughly equal fre-
quency.

• Encode left group with leading 0, right group with leading 1.

• Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol Frequency Encoding

R 0.35 0. . .

U 0.17 0. . .

D

0.17 1. . .

O

0.16 1. . .

P 0.15 1. . .

R U

D

O

P

0 1

• Count frequencies of all characters in text to be compressed.

• Break grouped characters into two groups of roughly equal fre-
quency.

• Encode left group with leading 0, right group with leading 1.

• Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol Frequency Encoding

R 0.35 00

U 0.17 01

D

0.17 1. . .

O

0.16 1. . .

P 0.15 1. . .

R U

D

O

P

0 1

0

1

• Count frequencies of all characters in text to be compressed.

• Break grouped characters into two groups of roughly equal fre-
quency.

• Encode left group with leading 0, right group with leading 1.

• Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol Frequency Encoding

R 0.35 00

U 0.17 01

D

0.17 10

O

0.16 11. . .

P 0.15 11. . .

R U

D

O

P

0 1 0 1

0 1

• Count frequencies of all characters in text to be compressed.

• Break grouped characters into two groups of roughly equal fre-
quency.

• Encode left group with leading 0, right group with leading 1.

• Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol Frequency Encoding

R 0.35 00

U 0.17 01

D

0.17 10

O

0.16 110

P 0.15 111
R U

D

O

P

0 1

0 1

0

1

0 1

• Count frequencies of all characters in text to be compressed.

• Break grouped characters into two groups of roughly equal fre-
quency.

• Encode left group with leading 0, right group with leading 1.

• Repeat until all groups are of size 1.
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Can We Do Better?

• We’ll say an encoding of symbols to codewords that are bitstrings
is optimal for a particular text if it encodes the text in the fewest
bits.

• Shannon-Fano coding is good, but not optimal.

• The optimal solution was found by an MIT graduate student, David
Huffman in a class taught by Fano. The students were given the
choice of taking the final or solving this problem (i.e., finding the
encoding and a proof of optimality).

• The result is called Huffman coding.

• That’s right: Fano assigned a problem he hadn’t been able to solve.
Professors do that occasionally.

• See also this article.
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Huffman Coding

R

0.35

U

0.17

D

0.17

O

0.16

P

0.15

R

0.35

U

0.17

D

0.17

O

P

0.31

0 1

R

0.35

U

D

O

P

0.31

0 1

0.34

0 1

• Put each symbol in a node labeled with the symbol’s relative fre-
quency (as before).

• Repeat the following until there is just one node:

– Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

– Let the edge to the left child be labeled ‘0’ and to the right be
labeled ‘1’.

• The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.
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Huffman Coding

R

0.35

U

D

O

P

0.31

0 1

0.34

0 1

R

0.35

U

D

O

P

0 10 1

0.65

0 1

R U

D

O

P

0 10 1

0 1

1.0

0

1

• Put each symbol in a node labeled with the symbol’s relative fre-
quency (as before).

• Repeat the following until there is just one node:

– Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

– Let the edge to the left child be labeled ‘0’ and to the right be
labeled ‘1’.

• The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.
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Comparison

Symbol Frequency Shannon-Fano Huffman

R 0.35 00 0

U 0.17 01 100

D 0.17 10 101

O 0.16 110 110

P 0.15 111 111

For this case, Shannon-Fano coding takes a weighted average of 2.31
bits per symbol, while Huffman coding take 2.3.
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LZW Coding

• So far, we have used systems with one codeword per symbol.

• To get better compression, must encodedmultiple symbols per code-
word.

• This will allow us to code strings such as

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

abababababababababababababababababababababa

abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

in space that can be than less than 43 × weighted average symbol
length.

• In LZW coding, we create new codewords as we go along, each cor-
responding to substrings of the text:

– Start with a trivial mapping of codewords to single symbols.

– After outputting a codeword that matches the longest possible
prefix, X, of the remaining input, add a new codeword Y that maps
to the substring X followed by the next input symbol.
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Example of LZW encoding

• Start with a trivial mapping of codewords to single symbols.

• After outputting a codeword that matches the longest possible pre-
fix, X, of the remaining input, add a new codeword Y that maps to
the substring X followed by the next input symbol.

Consider the following text as an example:

B="aababcabcdabcdeabcdefabcdefgabcdefgh"

We’ll compute C(B), the encoding of B. Our codewords will consist of
8-bit ASCII codes (0x00–0x7f).
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LZW Step 0: Initial state

B = a ababcabcdabcdeabcdefabcdefgabcdefgh

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

C(B) =
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LZW Step 1

B = a ababcabcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table is ‘a’, so output 0x61,

• And add a a to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

C(B) = 0x61
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LZW Step 2

B = a a babcabcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is still ‘a’, so
output 0x61,

• And add a b to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

C(B) = 0x6161
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LZW Step 3

B = aa b abcabcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is ‘b’, so output
0x62,

• And add b a to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

C(B) = 0x616162
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LZW Step 4

B = aab ab cabcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ‘ab’, so
output 0x81 (half as many bits as ‘ab’).

• And add ab c to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

C(B) = 0x61616281
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LZW Step 5

B = aabab c abcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ‘c’, so out-
put 0x63

• And add c a to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

C(B) = 0x6161628163
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LZW Step 6

B = aababcabcdabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ???, so
output ???

• And add ??? to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 ???

C(B) = 0x6161628163??
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LZW Step 6

B = aababc abc dabcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ‘abc’, so
output 0x83

• And add abc d to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 abcd

C(B) = 0x616162816383
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LZW Step 7

B = aababcabc d abcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ‘d’, so
output 0x64

• And add ‘da’ to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 abcd

0x86 da

C(B) = 0x61616281638364
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LZW Step 7

B = aababcabc d abcdeabcdefabcdefgabcdefgh

• Best prefix match in the table for remaining input is now ‘d’, so
output 0x64

• And add ‘da’ to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 abcd

0x86 da

C(B) = 0x61616281638364

– What’s next?

– What is the complete encoding? (When reviewing,
try to figure it out before looking at the next slide.)

Last modified: Wed Apr 29 14:54:33 2020 CS61B: Lecture #39 32



LZW Final State

B = aababcabcdabcdeabcdefabcdefgabcdefgh (200 bits)

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 abcd

0x86 da

Code String

0x87 abcde

0x88 ea

0x89 abcdef

0x8a fa

0x8b abcdefg

0x8c ga

0x8d abcdefgh

C(B) = 0x616162816383648565

876689678b68

(120 bits)

To think about: How might you represent this table to allow easily find-
ing the longest prefix at each step?
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Decompression

• Because each different input creates a different table, it would
seem that we need to provide the generated table in order to decode
a message.

• Interestingly, though, we don’t!

• Suppose that, starting with the same initial table we did before,
with codes 0x00–0x7f already assigned, we’re given

C(B) = 0x616162816383

and wish to find B.

• We can see it starts with aab. What’s next?

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>
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Reconstructing the Coding Table (I)

• Idea is to reconstruct the table as we process each codeword in
C(B).

• Let S(X) mean “the symbols encoded by codeword X ,” and let Yk

mean character k of string Y .

• For each codeword, X , in C(B), add S(X) to our result.

• Whenever we decoded two consecutive codewords, X1 and X2, add a
new codeword that maps to S(X1) + S(X2)0

• Thus, we recapitulate a step in the compression operation that cre-
ated C(B) in the first place.

• Since we go from left to right, the table will (almost) always already
contain the mapping we need for the next codeword.
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LZW Decompression, Step 1

C(B) = 0x 61 616281638364

• S(0x61) is ‘a’ in the table, so add it to B.

• Don’t have a previous codeword yet, so don’t add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

B = a
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LZW Decompression, Step 2

C(B) = 0x61 616281638364

• S(0x61) is ‘a’ in the table, so add it to B.

• We have two codewords—S(0x61)=’a’ twice—so add ‘aa’ to the table
as a new codeword

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

B = aa
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LZW Decompression, Step 3

C(B) = 0x6161 6281638364

• S(0x62) is ‘b’ in the table, so add it to B.

• We have two codewords—S(0x61)=’a’ and S(0x62)=’b’—so add ‘ab’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

B = aab
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LZW Decompression, Step 4

C(B) = 0x616162 81638364

• S(0x81) is ‘ab’ in the table, so add it to B.

• We have two codewords—S(0x62)=’b’ and S(0x81)=’ab’—so add ‘ba’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

B = aabab
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LZW Decompression, Step 5

C(B) = 0x61616281 638364

• S(0x63) is ‘c’ in the table, so add it to B.

• We have two codewords—S(0x81)=’ab’ and S(0x63)=’c’—so add ‘abc’
to the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

B = aababc
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LZW Decompression, Step 6

C(B) = 0x6161628163 8364

• S(0x83) is ??? in the table, so add it to B.

• We have two codewords—S(???)=??? and S(???)=???—so add ??? to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

??? ???

B = aababc???
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LZW Decompression, Step 6

C(B) = 0x6161628163 8364

• S(0x83) is ‘abc’ in the table, so add it to B.

• We have two codewords—S(0x63)=’c’ and S(0x83)=’abc’—so add ‘ca’
to the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

B = aababcabc
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LZW Decompression, Step 7

C(B) = 0x616162816383 64

• S(0x64) is ‘d’ in the table, so add it to B.

• We have two codewords—S(0x83)=’abc’ and S(0x64)=’d’—so add ‘abcd’
to the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc

0x84 ca

0x85 abcd

B = aababcabcd
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Reconstructing the Coding Table (II)

• In a previous slide, I said “. . . the table will (almost) always already
contain the mapping we need. . . ”

• Unfortunately, there are cases where it doesn’t.

• Consider the string B=’cdcdcdc’ as an example.

• After we encode it, we end up with

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 cd

0x81 dc

0x82 cdc

C(B) = 0x63648082

• But decoding causes trouble. . .
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Tricky Decompression, Step 1

C(B) = 0x 63 648082

• S(0x63) is ‘c’ in the table, so add it to B.

• Don’t have a previous codeword yet, so don’t add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

B = c
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Tricky Decompression, Step 2

C(B) = 0x63 648082

• S(0x64) is ‘d’ in the table, so add it to B.

• We have two codewords—S(0x63)=’c’ and S(0x64)=’d’—so add ‘cd’ to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 cd

B = cd
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Tricky Decompression, Step 3

C(B) = 0x6364 8082

• S(0x80) is ‘cd’ in the table, so add it to B.

• We have two codewords—S(0x64)=’d’ and S(0x80)=’cd’—so add ‘dc’ to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 cd

0x81 dc

B = cdcd
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Tricky Decompression, Step 4

C(B) = 0x636480 82

• Oops! S(0x82) is not yet in the table. What now?

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 cd

0x81 dc

0x82 ???

B = cdcd???

• Problem is that we could look ahead while coding, but can only look
behind when decoding.

• So must figure out what 0x82 is going to be by looking back.
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Tricky Decompression, Step 4 (Second Try)

C(B) = 0x636480 82

• S(0x82)=Z (to be figured out).

• Previously decoded S(0x80)="cd" and now have S(0x82)=Z, so will
add "cdZ0" to the table as S(0x82).

• So Z starts with S(0x80) and therefore Z0 must be ’c’!

• Thus S(0x82) = S(0x80)+Z0 = ’cdc’.

Code String

0x61 a

0x62 b

0x63 c

... ...

0x7e ~

0x7f <DEL>

0x80 cd

0x81 dc

0x82 cdc

B = cdcdcdc
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LZW Algorithm

• LZW is named for its inventors: Lempel, Ziv, and Welch.

• Was widely used at one time, but because of patent issues became
rather unpopular (especially among open-source folks).

• The patents expired in 2003 and 2004.

• Now found in the .gif files, some PDF files, the BSD Unix compress

utility and elsewhere.

• There are numerous other (and better) algorithms (such as those in
gzip and bzip2).

• The presentation here is considerably simplified.

– We used fixed-length (8-bit) codewords, but the full algorithm
produces variable-length codewords using (!) Huffman coding
(compressing the compression).

– The full algorithm clears the table from time to time to get rid
of little-used codewords.
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Some Thoughts

• Compressing a compressed text doesn’t result in much compression.

• Why must it be impossible to keep compressing a text?

• A program that takes no input and produces an output can be thought
of as an encodings of that output.

• Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

• For any specific bitstream, there is a specific answer!

• This is a deep concept, known as Kolmogorov Complexity.
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Some Thoughts

• Compressing a compressed text doesn’t result in much compression.

• Why must it be impossible to keep compressing a text?

• Otherwise you’d be able to compress any number of different mes-
sages to 1 bit!

• A program that takes no input and produces an output can be thought
of as an encodings of that output.

• Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

• For any specific bitstream, there is a specific answer!

• This is a deep concept, known as Kolmogorov Complexity.
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More Thoughts

• It’s actually weird that one can compress much at all.

• Consider a 1000-character ASCII text (8000 bits), and suppose we
manage to compress it by 50%.

• There are 28000 distinct messages in 8000 bits, but only 24000 possible
messages in 4000 bits.

• That is, no matter what one’s scheme, one can encode only 2−4000 of
the possible 8000-bit messsages by 50%! Yet we do it all the time.

• Reason: Our texts have a great deal of redundancy (aka low infor-
mation entropy).

• Texts with high entropy—such as random bits, previously compressed
texts, or encrypted texts—are nearly incompressible.
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Git

• Git Actually uses a different scheme from LZW for compression: a
combination of LZ77 and Huffman coding.

• LZ77 is kind of like delta compression, but within the same text.

• Convert a text such as

One Mississippi, two Mississippi

into something like

One Mississippi, two <11,7>

where the <11,7> is intended to mean “the next 11 characters come
from the text that ends 7 characters before this point.”

• We add new symbols to the alphabet to represent these (length,
distance) inclusions.

• When done, Huffman encode the result.
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Lossy Compression

• For some applications, like compressing video and audio streams, it
really isn’t necessary to be able to reproduce the exact stream.

• We can therefore get more compression by throwing away some in-
formation.

• Reason: there is a limit to what human senses respond to.

• For example, we don’t hear high frequencies, or see tiny color vari-
ations.

• Therefore, formats like JPEG, MP3, or MP4 use lossy compression
and reconstruct output that is (hopefully) imperceptibly different
from the original at large savings in size and bandwidth.

• You can see more of this in EE120 and other courses.
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Wrapping Up

• Lossless compression saves space (and bandwidth) by exploiting re-
dundancy in data.

• Huffman and Shannon-Fano coding represent individual symbols of
the input with shorter codewords.

• LZW and similar codes represents multiple symbols with shorter
codewords.

• Both adapt their codewords to the text being compressed.

• Lossy compression both uses redundancy and exploits the fact that
certain consumers of compressed data (like humans) can’t really use
all the information that could be encoded.
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