
CS61B Lecture #9: Interfaces and Abstract Classes

Recreation

Show that for any polynomial with a leading coefficient of 1 and integral
coefficients, all rational roots are integers.

Reminder:
The four projects are individual efforts in this class (no partnerships).
Feel free to discuss projects or pieces of them before doing the work.
But you must complete each project yourself. That is, feel free to
discuss projects with each other, but be aware that we expect your
work to be substantially different from that of all your classmates (in
this or any other semester). You will find a more detailed account of
our policy in under the “Course Info” tab on the course website.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 1

Abstract Methods and Classes

• Instance method can be abstract: No body given; must be supplied
in subtypes.

• One good use is in specifying a pure interface to a family of types:

/** A drawable object. */

public abstract class Drawable {
// "abstract class" = "can’t say new Drawable"

/** Expand THIS by a factor of XSIZE in the X direction,

* and YSIZE in the Y direction. */

public abstract void scale(double xsize, double ysize);

/** Draw THIS on the standard output. */

public abstract void draw();

}

• Now a Drawable is something that has at least the operations scale
and draw on it.

• Can’t create a Drawable because it’s abstract.

• In fact, in this case, it wouldn’t make any sense to create one, be-
cause it has two methods without any implementation.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 2

Methods on Drawables

/** A drawable object. */

public abstract class Drawable {
/** Expand THIS by a factor of SIZE */

public abstract void scale(double xsize, double ysize);

/** Draw THIS on the standard output. */

public abstract void draw();

}

• Can’t write new Drawable(), BUT, we can write methods that operate
on Drawables in Drawable or in other classes:

void drawAll(Drawable[] thingsToDraw) {
for (Drawable thing : thingsToDraw)

thing.draw();

}

• But draw has no implementation! How can this work?

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 3

Concrete Subclasses

• Regular classes can extend abstract ones to make them “less ab-
stract” by overriding their abstract methods.

• Can define kinds of Drawables that are concrete, in that all methods
have implementations and one can use new on them:

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 4

Concrete Subclass Examples

public class Rectangle extends Drawable {

public Rectangle(double w, double h) { this.w = w; this.h = h; }

public void scale(double xsize, double ysize) {

w *= xsize; h *= ysize;

}

public void draw() { draw a w x h rectangle }

private double w,h;

}

Any Oval or Rectangle is a Drawable.

public class Oval extends Drawable {

public Oval(double xrad, double yrad) {

this.xrad = xrad; this.yrad = yrad;

}

public void scale(double xsize, double ysize) {

xrad *= xsize; yrad *= ysize;

}

public void draw() { draw an oval with axes xrad and yrad }

private double xrad, yrad;

}

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 5

Using Concrete Classes

• We can create new Rectangles and Ovals.

• Since these classes are subtypes of Drawable, we can put them in
any container whose static type is Drawable, . . .

• . . . and therefore can pass them to any method that expects Drawable
parameters:

• Thus, writing

Drawable[] things = {
new Rectangle(3, 4), new Oval(2, 2)

};
drawAll(things);

draws a 3× 4 rectangle and a circle with radius 2.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 6

Aside: Documentation

• Our style checker would insist on comments for all the methods,
constructors, and fields of the concrete subtypes.

• But we already have comments for draw and scale in the class Drawable,
and the whole idea of object-oriented programming is that the sub-
types conform to the supertype both in syntax and behavior (all
scale methods scale their figure), so comments are generally not
helpful on overriding methods. Still, the reader would like to know
that a given method does override something.

• Hence, the @Override annotation. We can write:

@Override

public void scale(double xsize, double ysize) {
xrad *= xsize; yrad *= ysize;

}
@Override

public void draw() { draw a circle with radius rad }

• The compiler will check that these method headers are proper over-
ridings of the parent’s methods, and our style checker won’t com-
plain about the lack of comments.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 7

Interfaces

• In generic English usage, an interface is a “point where interaction
occurs between two systems, processes, subjects, etc.” (Concise
Oxford Dictionary).

• In programming, often use the term to mean a description of this
generic interaction, specifically, a description of the functions or
variables by which two things interact.

• Java uses the term to refer to a slight variant of an abstract class
that (until Java 1.7) contains only abstract methods (and static con-
stants), like this:

public interface Drawable {

void scale(double xsize, double ysize); // Automatically public.

void draw();

}

• Interfaces are automatically abstract: can’t say new Drawable();
can say new Rectangle(...).

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 8

Implementing Interfaces

• Idea is to treat Java interfaces as the public specifications of data
types, and classes as their implementations:

public class Rectangle implements Drawable { ... }

(We extend ordinary classes and implement interfaces, hence the
change in keyword.)

• Can use the interface as for abstract classes:

void drawAll(Drawable[] thingsToDraw) {
for (Drawable thing : thingsToDraw)

thing.draw();

}

• Again, this works for Rectangles and any other implementation of
Drawable.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 9

Multiple Inheritance

• Can extend one class, but implement any number of interfaces.

• Contrived Example:

interface Readable {

Object get();

}

interface Writable {

void put(Object x);

}

class Source implements Readable {

public Object get() { ... }

}

void copy(Readable r,

Writable w) {

w.put(r.get());

}

class Sink implements Writable {

public void put(Object x) { ... }

}

class Variable implements Readable, Writable {

public Object get() { ... }

public void put(Object x) { ... }

}

• The first argument of copy can be a Source or a Variable. The
second can be a Sink or a Variable.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 10

Review: Higher-Order Functions

• In Python, you had higher-order functions like this:

def map(proc, items):

function list

if items is None:

return None

else:

return IntList(proc(items.head), map(proc, items.tail))

and you could write

map(abs, makeList(-10, 2, -11, 17))

====> makeList(10, 2, 11, 17)

map(lambda x: x * x, makeList(1, 2, 3, 4))

====> makeList(t(1, 4, 9, 16)

• Java does not have these directly, but can use abstract classes or
interfaces and subtyping to get the same effect (with more writing)

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 11

Map in Java

/** Function with one integer argument */

public interface IntUnaryFunction {

int apply(int x);

}

IntList map(IntUnaryFunction proc,

IntList items) {

if (items == null)

return null;

else return new IntList(

proc.apply(items.head),

map(proc, items.tail)

);

}

• It’s the use of this function that’s clumsy. First, define class for
absolute value function; then create an instance:

class Abs implements IntUnaryFunction {
public int apply(int x) { return Math.abs(x); }

}
--

R = map(new Abs(), some list);

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 12

Lambda Expressions

• Since Java 7, one can create classes likes Abs on the fly with anony-
mous classes:

R = map(new IntUnaryFunction() {
public int apply(int x) { return Math.abs(x); }

}, some list);

• This is sort of like declaring

class Anonymous implements IntUnaryFunction {
public int apply(int x) { return Math.abs(x); }

}

and then writing

R = map(new Anonymous(), some list);

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 13

Lambda in Java 8

• In Java 8, lambda expressions are even more succinct:

R = map((int x) -> Math.abs(x), some list);
or even better, when the function already exists:

R = map(Math::abs, some list);

• These figure out you need an anonymous IntUnaryFunction and cre-
ate one.

• You can see examples in signpost.GUI:

addMenuButton("Game->New", this::newGame);

Here, the second parameter of ucb.gui2.TopLevel.addMenuButton
is a call-back function.

• It has the Java library type java.util.function.Consumer, which
has a one-argument method, like IntUnaryFunction,

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 14

Inheriting Headers vs. Method Bodies

• One can implement multiple interfaces, but extend only one class:
multiple interface inheritance, but single body inheritance.

• This scheme is simple, and pretty easy for language implementors to
implement.

• However, there are cases where it would be nice to be able to “mix
in” implementations from a number of sources.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 15

Extending Supertypes, Default Implementations

• As indicated above, before Java 8, interfaces contained just static
constants and abstract methods.

• Java 8 introduced static methods into interfaces and also default
methods, which are essentially instance methods and are used when-
ever a method of a class implementing the interface would otherwise
be abstract.

• Suppose I want to add a new one-parameter scalemethod to all con-
crete subclasses of the interface Drawable. Normally, that would
involve adding an implementation of that method to all concrete
classes.

• We could instead make Drawable an abstract class again, but in the
general case that can have its own problems.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 16

Default Methods in Interfaces

• So Java 8 introduced default methods:

public interface Drawable {
void scale(double xsize, double ysize);

void draw();

/** Scale by SIZE in the X and Y dimensions. */

default void scale(double size) {
scale(size, size);

}
}

• Useful feature, but, as in other languages with full multiple inher-
itance (like C++ and Python), it can lead to confusing programs. I
suggest you use them sparingly.

Last modified: Tue Sep 17 17:37:24 2019 CS61B: Lecture #9 17

	CS61B Lecture #9: Interfaces and Abstract Classes
	Abstract Methods and Classes
	Methods on Drawables
	Concrete Subclasses
	Concrete Subclass Examples
	Using Concrete Classes
	Aside: Documentation
	Interfaces
	Implementing Interfaces
	Multiple Inheritance
	Review: Higher-Order Functions
	Map in Java
	Lambda Expressions
	Lambda in Java 8
	Inheriting Headers vs. Method Bodies
	Extending Supertypes, Default Implementations
	Default Methods in Interfaces

