State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

Logic Gates

1. Label the following logic gates:

2. Convert the following to boolean expressions:
(a) NAND
(b) XOR
(c) XNOR
3. Create an AND gate using only NAND gates.
4. How many different two-input logic gates can there be? How many n-input logic gates?

Boolean Logic

$$
\begin{array}{llll}
1+A=1 & A+\bar{A}=1 & A+A B=A & (A+B)(A+C)=A+B C \\
0 B=0 & B \bar{B}=0 & A+\bar{A} B=A+B & \\
\text { DeMorgan's Law: } & \overline{A B}=\bar{A}+\bar{B} & \overline{A+B}=\bar{A} \bar{B} &
\end{array}
$$

1. Minimize the following boolean expressions:
(a) Standard: $(A+B)(A+\bar{B}) C$
(b) Grouping \& Extra Terms: $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} \bar{C}+A B C+A \bar{B} C$
(c) DeMorgan's: $\overline{A(\bar{B} \bar{C}+B C)}$

Finite State Machine

1. Draw a transition diagram for an FSM that can take in an input sequence one bit at a time, and after each input is received, output whether the number of 1 s is divisible by 3 . Write out the truth table that the combinational logic block must implement (remember to assign each state a binary encoding). Finally, write the Boolean algebra expressions that implement the FSMs truth table.
