
CS61C Fall 2012 – 10 – Pipelining and Hazards

1

Pipelining Hazards:

Structural – Hazards that occur due to competition for the same resource (register file read vs. write
back, instruction fetch vs. data read). These are solved by caching and clever register timing.
Control – Hazards that occur due to non-sequential instructions (jumps and branches). These cannot be
solved completely by forwarding, so we’re forced to introduce a branch-delay slot (MIPS) or use branch
prediction.
Data – Hazards that occur due to data dependencies (instruction requires result from earlier
instruction). These are mostly solved by forwarding, but lw still requires a bubble.

1) Suppose you’ve designed a MIPS processor implementation where the stages take the following
lengths of time: IF=15ns, ID=5ns, EX=25ns, MEM=40ns, WB=15ns. What is the minimum clock period
where your processor functions properly? What should be the focus for the next generation?

2) Your friend tells you that his processor design is 5x better than yours, since it has 25 pipeline stages to
your 5. Is he right?

3) Spot the data dependencies! Draw arrows from the stages where data is made available, directed to
where it is needed. Circle the involved registers in the instructions. Assume no forwarding. One
dependency has been drawn for you.

 time ->

addi $t0 $t1 100 F D A M W

lw $t2 4($t0) F D A M W

add $t3 $t1 $t2 F D A M W

sw $t3 8($t0) F D A M W

lw $t5 0($t6) F D A M W

or $t5 $t0 $t3 F D A M W

!

CS!61C!Fall!2013!–!11!–!Pipelining!and!Hazards!

CS61C Fall 2012 – 10 – Pipelining and Hazards

2

4) Redo the above question assuming that our hardware provides forwarding.

 time ->

addi $t0 $t1 100 F D A M W

lw $t2 4($t0) F D A M W

add $t3 $t1 $t2 F D A M W

sw $t3 8($t0) F D A M W

lw $t5 0($t6) F D A M W

or $t5 $t0 $t3 F D A M W

5) How many stalls will we have to add to the pipeline to resolve the hazards in 3)? How many stalls to
resolve the hazards in 4)?

6) Rewrite the following delayed branch MIPS excerpt to maximize performance (assuming forwarding).

Loop: addi $v0, $v0, 1
 addi $t1, $a0, 1
 lbu $t0, 0($t1)
 sb $t0, 0($a0)
 addi $a0, $a0, 1
 bne $t0, $0, Loop
 nop
 jr $ra

7) Now, assume for the delayed branch code from 6) that our hardware can execute Static Dual Issue for
any two instructions at once. Using reordering (with nops for padding), but no loop unrolling, schedule
the instructions to make the loop take as few clock cycles as possible.

!

CS!61C!Fall!2013!–!11!–!Pipelining!and!Hazards!

