CS 61C:

Great Ideas in Computer Architecture
Introduction to C, Part Il

Instructor:
Randy H. Katz
http://inst.eecs.Berkeley.edu/~cs61c/fal3

9/10/13 Fall 2013 -- Lecture #4

Agenda

* Pointers and Arrays
* Administrivia

* Pointer arithmetic

* Arrays vs. pointers

* Technology Break

* Pointer Problems

* Criticisms of C

* And in Conclusion, ...

9/10/13 Fall 2013 -- Lecture #4

9/10/13

Agenda

* Pointers and Arrays
e Administrivia

* Pointer arithmetic
e Arrays vs. pointers
* Technology Break

* Pointer Problems

e Criticisms of C

* And in Conclusion,

9/10/13 Fall 2013 -- Lecture #4

All Eates @ one time

New-School Machine Structures
(It’s a bit more comphcated')

Software Hardware

Parallel Requests
) Warehouse
Assigned to computer Scale

e.g., Search “Katz” Computer

Harness
Parallel Threads Parallelism &

Assigned to core Achieve High
e.g., Lookup, Ads Performance

Memory o (Cache)
Inp,ut/OIJtput

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

Core

>1 data item @ one time struction Unit(s) Eun?tc(t;;mal
.]
e.g., Add of 4 pairs of words “::H,,H R +8,/Ag+B, AytB A3+B/

td 1

Hardware descriptions .
Cache Memory .-

-

7

Programming Languages
9/10/13 Lecwar\?zow -- Lecture #4

Logic Gates

4

9/10/13

Big Idea #1: Levels of Representation/

v[k+1] = temp;
Compiler
[lw $t0, 0(52) Anything can be represented
Assembly Language Iw gtl, 4(32) as a number,
Program (e.g., MIPS) sw 5t1,0(52) B : I~
sw S0, 4($2) i.e., data or instructions
Assembler
- 0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program (MIPS) 1100 0110 1010 1111 0101 1000 0000 1001

[1 0101 1000 0000 1001 1100 0110 1010 1111

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
d/10/15 (Circuit Schematic Diagrams) . ,ol; .

Pointer Review

* int *x;

— Tells compiler that variable x is address of an int
*X = &y;

— Tells compiler to assign address of y to x

— & called the “address operator” in this context
sz = *x;

— Tells compiler to assign value at address in x to z

— * called the “dereference operator” in this
context

9/10/13 Fall 2013 -- Lecture #4 6

9/10/13

Pointer Review

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

7

7

9/10/13 Fall 2013 -- Lecture #4

Pointers and Parameter Passing

* Java and C pass parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void addOne (int x) {
x=x + 1;
}
int y = 3;
addOne(y);
y remains equal to 3

9/10/13 Fall 2013 -- Lecture #4

9/10/13

Pointers and Parameter Passing

* How can we get a function to change the
value held in a variable?

void addOne (int *p) {
*p = *p + 1;
}

int y = 3;

addOne (&y) ;

y is now equal to 4

9/10/13 Fall 2013 -- Lecture #4 9

C Pointer Dangers

* Declaring a pointer just allocates space to hold
the pointer — it does not allocate the thing
being pointed to!

e Local variables in C are not initialized, they
may contain anything (aka “garbage”)

* What does the following code do?

void £ ()
{
int *ptr;
*ptr = 5;
}

9/10/13 Fall 2013 -- Lecture #4 10

9/10/13

Pointers and Structures

struct Point {
int x;
int y;

}i

Point pl;
Point p2;
Point *paddr;

/* dot notation */
int h = pl.x;
p2.y = pl.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr) .x;

9/10/13

/* This works too */

pl = p2;

Fall 2013 -- Lecture #4 11

How many logic and syntax errors?

O 24

9/10/13

void main(); {

int *p, x=5, y; // init

y = *(p = &x) + 1;

int z;

flip-sign(p);

printf ("x=%d,y=%d,p=%d\n", x,y,p);
}

flip-sign (int *n) {*n = - (*n)}

Fall 2013 -- Lecture #4 12

(af

9/10/13

#insert <stdio.h>
main ()7) { //int main(void) {

}

More than four syntax + logic errors in this C code

9/10/13

fliﬁC&ign(int *n) {*n = —(*nx:}
// return (0); }

Peer Instruction Answer

int *p, x=5, y; // init
y = *(p = &x) + 1;

int z;
flipBsign (p) ;
printf("X=%d,y=%d,p=%d\n"rxryx:i);

Fall 2013 -- Lecture #4 13

What is output after correct errors?

O x=5,y=6,p=-5
0 x==5,y=6,p=-5
0 x=-5,y=4,p=-5

0 x==5,y==6,p==5

9/10/13

(af
EECS|

void main(); {
int *p, x=5, y; // init
int z;
y = *(p = &x) + 1;
flip_sign(p);
printf ("x=%d, y=%d, p=%d\n",
X, ¥, *P);
}
flip sign(int *n)
{*n = = (*n); }

Fall 2013 -- Lecture #4 14

9/10/13

(af

What is output after correct errors?

EECS
void main(); {
int *p, x=5, y; // init
int z;

0O — = .
X 5,y 6Ip 5 y = *(p = &x) + 1;

flip sign(p) -
printf ("x=%d, y=%d, p=%d\n",
X, Y, *P);

0 x==5,y=6,p=-5

}
0 flip sign(int *n)
{*n = -(*n); }

D %==5,y==6,p==5

9/10/13 Fall 2013 -- Lecture #4 15

Arrays (1/5)

* Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};
declares and initializes a 2-element integer array

* Accessing elements:
ar [num]
returns the numth element

9/10/13 Fall 2011 -- Lecture #4 16

9/10/13

Arrays (2/5)

* Arrays are (almost) identical to pointers

—char *stringandchar string[] are
nearly identical declarations

— Differ in subtle ways: incrementing, declaration of
filled arrays

— End of C string marking by 0 in last character

* Key Concept: Array variable is a “pointer” to
the first (0th) element

9/10/13 Fall 2011 -- Lecture #4 17

C Strings

e String in Cis just an array of characters
char string[] = "abc";

* How do you tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] != 0) n++;
return n;

9/10/13 Fall 2013 -- Lecture #4 18

9/10/13

Arrays (3/5)

* Consequences:
— ar is an array variable, but looks like a pointer
ar[0] isthesameas *ar
ar[2] isthesameas * (ar+2)
— We can use pointer arithmetic to conveniently access
arrays
. Delccljared arrays are only allocated while the scope is
vali

char *foo () {
char stringl[32]; ...;
return string;

}
is incorrect and very very bad

9/10/13 Fall 2011 -- Lecture #4 19

Arrays (4/5)

* Array size n; want to access from 0 to n-1, so you should
use counter AND utilize a variable for declaration &
incrementation

— Bad pattern
int i, ar[10];
for(i = 0; 1 < 10; i++){ ... }
— Better pattern
int ARRAY SIZE = 10
int i, a[ARRAY SIZE];
for(i = 0; 1 < ARRAY SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH

— You’re utilizing indirection and avoiding maintaining two copies
of the number 10

— DRY: “Don’t Repeat Yourself”

9/10/13 Fall 2011 -- Lecture #4 20

9/10/13

10

Arrays (5/5)

 Pitfall: An array in C does not know its own
length, and its bounds are not checked!
— Consequence: We can accidentally access off the

end of an array
— Consequence: We must pass the array and its size
to any procedure that is going to manipulate it

* Segmentation faults and bus errors:

— These are VERY difficult to find;
be careful! (You’ll learn how to debug these in lab)

9/10/13 Fall 2011 -- Lecture #4 21

Array And in Conclusion ...

* Array indexing is syntactic sugar for pointers

* a[i] istreated as * (a+1i)

* E.g., three equivalent ways to zero an array:
—for (i=0; 1 < size; i++) a[i] = 0;
—for (1i=0; 1 < size; 1it++) *(a+i) = 0;

—for (p=a; p < atsize; pt+) *p = 0;

9/10/13 Fall 2011 -- Lecture #4 22

9/10/13

11

What is TRUE about this function?

void foo(char *s, char *t)

{ while (*s)
S++;
O It has syntax errors ~ While (¥*s++ = *t++)
}
O No syntax errors; it changes characters in
string t to next character in the string s
O No syntax errors; it copies a string at address
t to the string at address s
O Neo syntax errors; it appends the string at
address t to the end of the string at
address s

(f
EECs|

Cs

What is TRUE about this function?

void foo(char *s, char *t)

{ while (*s)
S++;
O It has syntax errors ~ While (¥*s++ = *t4+)
}
O No syntax errors; it changes characters in
string t to next character in the string s
O No syntax errors; it copies a string at address
t to the string at address s
O Neo syntax errors; it appends the string at
address t to the end of the string at
address s

Cs

(f
EECs|

24

9/10/13

12

Question: Which statement is FALSE
regarding C and Java?

O Arrays in C are just pointers to the 0-th
element

O As Java was derived from C, it has the same
control flow constructs

O Like Java, in C you can check the length of an
array (a.length gives no. elementsin a)

O C has pofnters but Java does not allow you
to manipulate pointers or memory
addresses of any kind

Cs

(l
EECs|

Question: Which statement is FALSE
regarding C and Java?

O Arrays in C are just pointers to the 0-th
element

O As Java was derived from C, it has the same
control flow constructs

O Like Java, in C you can check the length of an
array (a.length gives no. elementsin a)

O C has pofnters but Java does not allow you
to manipulate pointers or memory
addresses of any kind

(l
EECs|

Cs

26

9/10/13

13

Pointer Arithmetic

pointer + number pointer — number

E.g., pointer + 1 adds 1 something to a pointer

char *p; int *p;
char a; int a;
char b; int b;
p = &a; p = &a
P +=1; “T— Ineach, pnow pointstob e +=1;

(Assuming compiler doesn’t

reorder variables in memory)
Adds 1 *sizeof (char) Adds 1 *sizeof (int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

9/10/13 Fall 2013 -- Lecture #4 27

Arrays and Pointers
Passing arrays:

Must explicitly
Really int *array passthe size
/

* Array = pointer to the initial (Oth) array - \
int
element .
foo(int arrayl[],

unsigned int size)
alfil] = *(a+i) {
.. array[size - 1] ..

* An array is passed to a function as a pointer
— The array size is lost! int
main (void)
* Usually bad style to interchange arrays and | {
pointers int a[10], b[5];

— Avoid pointer arithmetic! - £oo(a, 10).. foo(b, 5) ..

9/10/13 Fall 2013 -- Lecture #4 28

9/10/13

14

Arrays and Pointers

int
foo(int array|[],

unsigned int size)

{
is print?
‘// What does this print? 8
printf (“%d\n”, sizeof (array)); .
... because array is really
} . . .
a pointer (and a pointer is
. architecture dependent, but
int likely to be 8 on modern
main (void) machines!)
{
int a[10], bI[5];
. foo(a, 10).. foo(b, 5) .. | __— What does this print? 40
printf (“%d\n”, sizeof(a)); —
}
9/10/13 Fall 2013 -- Lecture #4 29
int i; int *p;

int array[10];

for (i = 0; i < 10; i++)
{

int array[10];

for p < &array[10]
{

array[i] = ..; i
} }
These code sequences have the same effect!
9/10/13 Fall 2013 -- Lecture #4 30

9/10/13

15

Agenda

* Arrays

* Administrivia

* Pointer arithmetic

e Arrays vs. pointers

* Technology Break

* Pointer Problems

e Criticisms of C

* And in Conclusion, ...

9/10/13 Fall 2013 -- Lecture #4 31

Administrivia

* CS61cis relentless!
— Lab #2, HW #2 posted
— HW #2 due Sunday before midnight

e Midterm rooms determined!
— 1 Pimental, 10 Evans, 155 Dwinelle

9/10/13 Fall 2013 -- Lecture #4 32

9/10/13

16

SEPTEMBER 9, 2013, 10:00 AM | B 10 Comments

The Cloud Era Begins for Enterprise Tech

By QUENTIN HARDY

Peter DaSilva/The New York Times; Joe KlamarfAgence France-Presse — Getty Images Justin Sullvan/Getty Images
Chief Executives Clockwise from top left: Marc Benioff of Salesforce, Aneel Bhusri of Workday, Jeffrey P. Bezos of
Amazon and Steven A. Ballmer of Microsoft.

] rFacesook Let’s say it: Last summer was the beginning of the end for the old guard in
what is still the biggest part of technology — business spending on
everything from servers to software. This fall begins a new competition for
9/10/ 3g coooLe- the hearts and minds of corporate customers. 33

W TWITTER

Agenda

e Pointers and Arrays
e Administrivia

* Pointer arithmetic

* Arrays vs. pointers

* Technology Break

* Pointer Problems

e Criticisms of C

* And in Conclusion ...

9/10/13 Fall 2013 -- Lecture #4 34

9/10/13

17

Pointer Arithmetic (1/2)

* Since a pointer is just a memory address, we can
add to it to step through an array

* p+1 correctly computes a ptr to the next array
element automatically depending on
sizeof (type)
* *pt+tvs. (*p)++7?
X = *p++ = x = *p; p p + 1;
X = (*p)++= x = *p; *p = *p + 1;
This is a C syntax/semantics thing

— C takes care of it in the same way it handles arrays

9/10/13 Fall 2013 -- Lecture #4 35

What if we have an array of large structs (objects)?

Pointer Arithmetic (2/2)

* Every addition or subtraction to a pointer
steps the number of bytes of thing it is
declared to point to
— This is why type-casting can get you into trouble
— 1 byte for a char, 4 bytes for an int, etc.

* Following are equivalent:

int get(int arrayl[], int n)
{

return (array(nl]);
// OR...
return * (array + n);

9/10/13 } Fall 2013 -- Lecture #4 36

9/10/13

18

If the first printf outputs 1005 5 10,
what will the next two printf output?

int main (void) {

0O 10110510
10111511

O 10410510
10411511

O 101 <other>5 10
101 <3-others>

O Error message

int A[] = {5,10};
int *p = A;
printf (“%u %d %d %d\n”,

p, *p, A[O], A[L]);

p= p+1l;
printf (“%u %d %d %d\n”,

p, *p, A[O], A[L]);

*p = *p + 1;
printf (“$u %d %d %$d\n”,

p, *p, A[O], A[L]);

AN

510 |

A[O0]A[1] P

(af
EECS|

If the first printf outputs 1005 5 10,
what will the next two printf output?

int main (void) {

(af
EECS|

0 10110510 printf (“%u %d %d 5d\n”,
10111511 p, *p, A[0], A[l]);
p= p+1l;
0 10410510 printf (“su %d %d %d\n”,
10411511 p, *p, A[0], A[l]);

O 101 <other>5 10
101 <3-others>

O Error message

int A[] = {5,10};
int *p = A;

*p = *p + 1;
printf (“$u %d %d %$d\n”,

p, *p, A[O], A[Ll]);

AN

510 |

A[O0]A[1] P

38

9/10/13

19

Pointers & Allocation (1/2)

» After declaring a pointer:
—int *ptr;

* ptr doesn’t actually point to anything yet
(points somewhere, but don’t know where).
We can either:

— Make it point to something that already exists, or

— Allocate room in memory for something new that
it will point to ...

9/10/13 Fall 2013 -- Lecture #4 39

Pointers & Allocation (2/2)

* Pointing to something that already exists:

—int *ptr, varl, var2; varl = 5;
ptr = &varl; var2 = *ptr;

 varl and var2 have space implicitly
allocated for them

A N[

ptr varl

var2 5

9/10/13 Fall 2013 -- Lecture #4 40

9/10/13

20

Arrays
(one element past array must be valid)

* Array size n; want to access from 0 to n-1, but test for exit by
comparing to address one element past the array

Il
o
~e

int ar[10], *p, *g, sum

p = &ar[0]; g = &ar[10];

while (p ! q)
/* sum sum + *p; p =p + 1; */
sum += *p++;

Is this legal?

-~

* Cdefines that one element past end of array must be a valid
address, i.e., will not cause an bus error or address error

9/10/13 Fall 2013 -- Lecture #4 41

Pointer Arithmetic

* What is valid pointer arithmetic?
— Add an integer to a pointer
— Subtract 2 pointers (in the same array)
— Compare pointers (<, <=, ==, I=, >, >=)
— Compare pointer to NULL (indicates that the pointer
points to nothing)

* Everything else is illegal since it makes no sense:
— Adding two pointers
— Multiplying pointers
— Subtract pointer from integer

9/10/13 Fall 2013 -- Lecture #4 42

9/10/13

21

Pointer Arithmetic to Copy Memory

* We can use pointer arithmetic to “walk”
through memory:
void copy(int *from, int *to, int n)
{
int i;
for (i=0; i<n; i++) {
*to++ = *from++;

}
* Note we had to pass size (n) to copy

9/10/13 Fall 2013 -- Lecture #4 43

Arrays vs. Pointers

* Array name is a read-only pointer to the Oth element
of the array
* Array parameter can be declared as an array or a

pointer; an array argument can be passed as a
pointer

int strlen(char s[]) int strlen (char *s)
{ {
int n = 0; int n = 0;
while (s[n] != 0) while (s[n] != 0)
n++; +;

/ n++;
return n; return n;
} }

Could be written:
while (s[n])

Falt 2013 Lecture #4 44

9/10/13

9/10/13

22

Pointer Arithmetic And in
Conclusion ...

=x = *(p+l);
* x = *p+l ?
=x = (*p) + 1 ;
*[x = (*p)++ ?]
=

014+ A[FTpF) 7]

=p=p+t1l;i x="p;
* Lesson?

— Using anything but the standard *p++, (*p) ++ causes more
problems than it solves!

9/10/13 Fall 2013 -- Lecture #4

Which one of the pointer arithmetic
operations is INVALID?

O Pointer + pointer

O Pointer —integer

O Polnter = pointer

I

46

9/10/13

23

Which one of the pointer arithmetic
operations is INVALID?

O Pointer + pointer

O Pointer —integer
O Integer + pointer

O Polnter = pointer

I

Which one of the pointer comparisons
is INVALID?

O Compare pointer to pointer

O Compare pointer to integer

O Compare pointerto 0

O Compare pointer to NULL

I

48

9/10/13

24

Which one of the pointer comparisons
is INVALID?

O Compare pointer to pointer

O Compare pointer to integer

O Compare pointerto 0

O Compare pointer to NULL

I

49

Pointers and Functions (1/2)

* What if the thing you want changed is a

pointer?
* What gets printed?

void IncrementPtr (int *p)

{ p= p+1; } q
1]

*q:

int A[3] = {50, 60, 70};
int *g = A;
IncrementPtr (q) ; 50

60

70

printf (“*g = %d\n”, *q);

9/10/13 Fall 2013 -- Lecture #4

50

9/10/13

25

Pointers and Functions (2/2)

* Solution! Pass a pointer to a pointer, declared
as **h

* Now what gets printed?

void IncrementPtr (int **h) *q = 60

{ *nh=*h+1; } T‘q q

int A[3] = {50, 60, 70}; 1 1

int *g = A;

IncrementPtr (&q) ; 50 60 70

printf (“*g = %d\n”, *q);

9/10/13 Fall 2013 -- Lecture #4

C String Standard Functions
#include <string.h>

* int strlen(char *string);
— Compute the length of string
* int strcmp(char *strl, char *str2);

— Return 0if strl and str2 are identical (how is this
different from strl == str2?)

* char *strcpy(char *dst, char *src);

— Copy contents of string src to the memory at dst.
Caller must ensure that dst has enough memory to
hold the data to be copied

— Note: dst = src only copies pointers, not string
itself

9/10/13 Fall 2013 -- Lecture #4

9/10/13

26

Agenda

Pointers and Arrays
Pointer arithmetic
Administrivia

Arrays vs. pointers
Technology Break
Pointer Problems
Criticisms of C

And in Conclusion, ...

9/10/13 Fall 2013 -- Lecture #4

53

Agenda

Arrays

Pointer arithmetic
Administrivia

Arrays vs. pointers
Technology Break
Pointer Problems
Criticisms of C

And in Conclusion, ...

9/10/13 Fall 2013 -- Lecture #4

54

9/10/13

27

Segmentation Fault vs. Bus Error

* http://www.hyperdictionary.com/

* Bus Error

— A fatal failure in the execution of a machine language
instruction resulting from the processor detecting an anomalous
condition on its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an odd address),
accessing a physical address that does not correspond to any
device, or some other device-specific hardware error. A bus
error triggers a processor-level exception which Unix translates
into a “SIGBUS” signal which, if not caught, will terminate the
current process.

* Segmentation Fault

— An error in which a running Unix program attempts to access
memory not allocated to it and terminates with a segmentation
violation error and usually a core dump.

9/10/13 Fall 2013 -- Lecture #4

C String Problems

* Common mistake is to forget to allocate an extra
byte for the null terminator

* More generally, C requires the programmer to
manage memory manually (unlike Java or C++)
— When creating a long string by concatenating several

smaller strings, the programmer must insure there is
enough space to store the full string!

— What if you don’t know ahead of time how big your
string will be?

— Buffer overrun security holes!

9/10/13 Fall 2013 -- Lecture #4 56

9/10/13

28

Criticisms of C - Syntax

* K&R: C, like any other language, has its
blemishes. Some of the operators have the
wrong precedence; some parts of the syntax
could be better.

* Precedence: == binds more tightly than &, |

—X & 1 == 0 meansx & (1 == 0)
vS. (x & 1) == 0
* 15 levels of precedence for 45 operators
— K&R p. 53

— Therefore use ()

9/10/13 Fall 2013 -- Lecture #4

Criticisms of C - Syntax

 Difference between assignment and equality
a=> is assignment
a ==>b is an equality test

* One of the most common errors for beginning
C programmers!

— One pattern (when comparing with constant) is to
put the var on the right!
If you happen to use =, it won’t compile!
e if (3 == a) {

9/10/13 Fall 2013 -- Lecture #4

9/10/13

29

Criticisms of C - Syntax

* Syntax: confusion about = and ==
—if (a=Db) istrueifa# 0 after assignment

e Syntax: *p++ means get value at address
pointed to by p, then increment p to point to
next data item

e *——p means decrement p to point to the
previous data item and that value

9/10/13 Fall 2013 -- Lecture #4 59

Criticisms of C - Syntax

e Case statement (switch) requires proper
placement of break to work properly

— Will do all cases until sees a break
switch(ch){

case ‘+': .. /* does + and - */
case ’‘-': .. break;

case ‘*’': .. break;

default:

}

9/10/13 Fall 2013 -- Lecture #4 60

9/10/13

30

Criticisms of C — Type casting

* Type casting - pretend that a variable declared
in one type is actually of another type

int x, y, *p;

y = *p; /* legal */

x; / illegal */

y = *((int *)x); /* legal! */

<!
I

9/10/13 Fall 2013 -- Lecture #4 61

Criticisms of C - Functionality

* No runtime checking of array bounds

9/10/13 Fall 2013 -- Lecture #4 62

9/10/13

31

And in Conclusion, ...

* Pointers are aliases to variables
* Pointers can be used to index into arrays

* Strings are (null terminated) arrays of
characters

* Pointers are the source of many bugsin C, so
handle with care

* C, like all languages, has flaws but its small
and useful language for some tasks

9/10/13 Fall 2013 -- Lecture #4

9/10/13

32

