
CS 61C Spring 2015
Guerrilla Section 1: Hardware & CPU

Problem 1:
a) Convert the following truth table to a Boolean expression and simplify it. An X means we don’t

care about the value of that output (it can be either 0 or 1).

b) Draw the transition state diagram from a FSM that reads a binary string bit-by-bit and outputs

whether the total number of 1s seen since the beginning is divisible by 3.

c) For the circuit below, assume that the setup time is 15ns, hold time is 30ns, and the AND gate

delay is 10ns. If the clock rate is 10 MHz and x updates 25ns after the rising edge of the clock,

what are the minimum and maximum values for the clk-to-Q delay to ensure proper functionality?

 Min: __________________ns

 Max: __________________ns

A B C Out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 X
1 1 1 X

Problem 2 (adapted from Sp04 Final):

We want to implement a new I-type instruction swai (store word then auto-increment). The operation

performs the regular sw operation, then increments the value in the rs register by 1.

The RTL for the swai instruction is:

 Mem[R[rs] + SignExtImm] = R[rt]; R[rs] = R[rs] + 1; PC = PC + 4

a) Modify the single-cycle MIPS datapath (shown above), and describe your changes in the space
below. Your modification may use simple adders, mux chips, wires, and new control signals. You
may replace original labels where necessary.

b) Fill out the values of the control signals in the table below, including any new control signals that

you have added in part A.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

Problem 3 (adapted from Su13 Final):

Assume that we run the following snippet of code on a 5-stage pipelined MIPS CPU with no
optimizations. Branch checking is done in the execute stage. Assume that $a1 = 1 at the beginning

of the code.

lw $t0, 0($a0)
loop: beq $a1, $0, exit

sll $t0, $t0, 2
addiu $a1, $a1, -1
sw $t0, 0($a0)
j loop

exit:
when we reach the exit label, we’re done

a) After which instructions are stalls needed? What is the total number of clock cycles for these

instructions to finish execution (when the pipeline becomes empty)? You may use the table below
as scratch space.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw

beq

sll

addiu

sw

j

beq

b) Consider the following optimizations separately. How many FEWER cycles are taken for the

addition of each optimization?

a. Forwarding

b. Branch prediction of never take branch

