
CS 61C Spring 2015
Guerrilla Section 1: Hardware & CPU

Problem 1:
a) Convert the following truth table to a Boolean expression and simplify it. An X means we don’t

care about the value of that output (it can be either 0 or 1).

 The trick is to set the output of the last 2 rows to 1.
 Then we get:
 !ABC + A!B!C + AB!C + ABC
 So we can group terms 1 and 4 and terms 2 and 3:
 =BC(!A + A) + A!C(!B + B)
 =BC + A!C
 This solution uses 4 gates (2 AND, 1 OR, 1 NOT).

b) Draw the transition state diagram from a FSM that reads a binary string bit-by-bit and outputs

whether the total number of 1s seen since the beginning is divisible by 3.

State = (number of 1s seen) % 3

 0/1 1/0 0/0
 00 01

Note: a valid
FSM needs an 1/0
arrow pointing 1/1
to the start state
 10
 0/0

c) For the circuit below, assume that the setup time is 15ns, hold time is 30ns, and the AND gate

delay is 10ns. If the clock rate is 10 MHz and x updates 25ns after the rising edge of the clock,

what are the minimum and maximum values for the clk-to-Q delay to ensure proper functionality?

 Min: ______20__________ns

 Max: ______75__________ns

If the clk-to-Q delay is too fast, the input to the register will change before the hold time is finished.

Thus, the minimum clk-to-Q delay is thold – tAND = 30 – 10 = 20ns.

On the other hand, we must make sure the critical path is no longer than the clock period, which is

100 ns (= 1/(10 MHz)). In other words, tsetup + tAND + tclk-to-Q ≤ 100ns, or tclk-to-Q ≤ 100ns - tsetup - tAND.

Solving yields tclk-to-Q ≤ 75 ns.

A B C Out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 X
1 1 1 X

Problem 2 (adapted from Sp04 Final):

We want to implement a new I-type instruction swai (store word then auto-increment). The operation

performs the regular sw operation, then increments the value in the rs register by 1.

The RTL for the swai instruction is:

 Mem[R[rs] + SignExtImm] = R[rt]; R[rs] = R[rs] + 1; PC = PC + 4

a) Modify the single-cycle MIPS datapath (shown above), and describe your changes in the space
below. Your modification may use simple adders, mux chips, wires, and new control signals. You
may replace original labels where necessary.

1. Add a new adder whose inputs are R[rs] (busA) and a constant 1. I’ll label the output as

RsPlusOne
2. Either connect RsPlusOne to the MemToReg mux, making it a 4-to-1 mux, and make

MemToReg a two-bit signal OR mux RsPlusOne with busW with a new mux (and introduce a
new control signal)

3. Either feed rs into the RegDst mux, making it a 4-to-1 mux, OR mux the output of the
RegDst mux with rs using a new mux (and introduce a new control signal)

b) Fill out the values of the control signals in the table below, including any new control signals that

you have added in part A.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

rs 1 PC+4 sign 1 add 1 RsPlusOne

Answers to part B depend on changes made in part A

Problem 3 (adapted from Su13 Final):

Assume that we run the following snippet of code on a 5-stage pipelined MIPS CPU with no
optimizations. Branch checking is done in the execute stage. Assume that $a1 = 1 at the beginning

of the code.

lw $t0, 0($a0)
loop: beq $a1, $0, exit

sll $t0, $t0, 2
addiu $a1, $a1, -1
sw $t0, 0($a0)
j loop

exit:
when we reach the exit label, we’re done

a) After which instructions are stalls needed? What is the total number of clock cycles for these

instructions to finish execution (when the pipeline becomes empty)? You may use the table below
as scratch space.

There is a data hazard between the lw – beq instructions (1 stall), a control hazard after beq (2 stalls),
a data hazard between sll – sw (1 stall), and a control hazard after j (1 stall). However, since we put
two stalls after the beq, the lw – beq stall is already accounted for. Thus, there are 4 stalls in total.

Total number of cycles = 15

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw IF ID EX M WB

beq IF ID EX M WB

sll IF ID EX M WB

addiu IF ID EX M WB

sw IF ID EX M WB

j IF ID EX M WB

beq IF ID EX M WB

b) Consider the following optimizations separately. How many FEWER cycles are taken for the

addition of each optimization?

a. Forwarding

1 cycle, only gets rid of data hazard from sll - sw

b. Branch prediction of never take branch
1 cycle, gets rid of control hazard from beq – sll, but not the data hazard from lw-sll

